| Step |
Hyp |
Ref |
Expression |
| 1 |
|
fourierdlem63.t |
⊢ 𝑇 = ( 𝐵 − 𝐴 ) |
| 2 |
|
fourierdlem63.p |
⊢ 𝑃 = ( 𝑚 ∈ ℕ ↦ { 𝑝 ∈ ( ℝ ↑m ( 0 ... 𝑚 ) ) ∣ ( ( ( 𝑝 ‘ 0 ) = 𝐴 ∧ ( 𝑝 ‘ 𝑚 ) = 𝐵 ) ∧ ∀ 𝑖 ∈ ( 0 ..^ 𝑚 ) ( 𝑝 ‘ 𝑖 ) < ( 𝑝 ‘ ( 𝑖 + 1 ) ) ) } ) |
| 3 |
|
fourierdlem63.m |
⊢ ( 𝜑 → 𝑀 ∈ ℕ ) |
| 4 |
|
fourierdlem63.q |
⊢ ( 𝜑 → 𝑄 ∈ ( 𝑃 ‘ 𝑀 ) ) |
| 5 |
|
fourierdlem63.c |
⊢ ( 𝜑 → 𝐶 ∈ ℝ ) |
| 6 |
|
fourierdlem63.d |
⊢ ( 𝜑 → 𝐷 ∈ ℝ ) |
| 7 |
|
fourierdlem63.cltd |
⊢ ( 𝜑 → 𝐶 < 𝐷 ) |
| 8 |
|
fourierdlem63.o |
⊢ 𝑂 = ( 𝑚 ∈ ℕ ↦ { 𝑝 ∈ ( ℝ ↑m ( 0 ... 𝑚 ) ) ∣ ( ( ( 𝑝 ‘ 0 ) = 𝐶 ∧ ( 𝑝 ‘ 𝑚 ) = 𝐷 ) ∧ ∀ 𝑖 ∈ ( 0 ..^ 𝑚 ) ( 𝑝 ‘ 𝑖 ) < ( 𝑝 ‘ ( 𝑖 + 1 ) ) ) } ) |
| 9 |
|
fourierdlem63.h |
⊢ 𝐻 = ( { 𝐶 , 𝐷 } ∪ { 𝑥 ∈ ( 𝐶 [,] 𝐷 ) ∣ ∃ 𝑘 ∈ ℤ ( 𝑥 + ( 𝑘 · 𝑇 ) ) ∈ ran 𝑄 } ) |
| 10 |
|
fourierdlem63.n |
⊢ 𝑁 = ( ( ♯ ‘ 𝐻 ) − 1 ) |
| 11 |
|
fourierdlem63.s |
⊢ 𝑆 = ( ℩ 𝑓 𝑓 Isom < , < ( ( 0 ... 𝑁 ) , 𝐻 ) ) |
| 12 |
|
fourierdlem63.e |
⊢ 𝐸 = ( 𝑥 ∈ ℝ ↦ ( 𝑥 + ( ( ⌊ ‘ ( ( 𝐵 − 𝑥 ) / 𝑇 ) ) · 𝑇 ) ) ) |
| 13 |
|
fourierdlem63.k |
⊢ ( 𝜑 → 𝐾 ∈ ( 0 ... 𝑀 ) ) |
| 14 |
|
fourierdlem63.j |
⊢ ( 𝜑 → 𝐽 ∈ ( 0 ..^ 𝑁 ) ) |
| 15 |
|
fourierdlem63.y |
⊢ ( 𝜑 → 𝑌 ∈ ( ( 𝑆 ‘ 𝐽 ) [,) ( 𝑆 ‘ ( 𝐽 + 1 ) ) ) ) |
| 16 |
|
fourierdlem63.eyltqk |
⊢ ( 𝜑 → ( 𝐸 ‘ 𝑌 ) < ( 𝑄 ‘ 𝐾 ) ) |
| 17 |
|
fourierdlem63.x |
⊢ 𝑋 = ( ( 𝑄 ‘ 𝐾 ) − ( ( 𝐸 ‘ 𝑌 ) − 𝑌 ) ) |
| 18 |
12
|
a1i |
⊢ ( 𝜑 → 𝐸 = ( 𝑥 ∈ ℝ ↦ ( 𝑥 + ( ( ⌊ ‘ ( ( 𝐵 − 𝑥 ) / 𝑇 ) ) · 𝑇 ) ) ) ) |
| 19 |
|
id |
⊢ ( 𝑥 = ( 𝑆 ‘ ( 𝐽 + 1 ) ) → 𝑥 = ( 𝑆 ‘ ( 𝐽 + 1 ) ) ) |
| 20 |
|
oveq2 |
⊢ ( 𝑥 = ( 𝑆 ‘ ( 𝐽 + 1 ) ) → ( 𝐵 − 𝑥 ) = ( 𝐵 − ( 𝑆 ‘ ( 𝐽 + 1 ) ) ) ) |
| 21 |
20
|
oveq1d |
⊢ ( 𝑥 = ( 𝑆 ‘ ( 𝐽 + 1 ) ) → ( ( 𝐵 − 𝑥 ) / 𝑇 ) = ( ( 𝐵 − ( 𝑆 ‘ ( 𝐽 + 1 ) ) ) / 𝑇 ) ) |
| 22 |
21
|
fveq2d |
⊢ ( 𝑥 = ( 𝑆 ‘ ( 𝐽 + 1 ) ) → ( ⌊ ‘ ( ( 𝐵 − 𝑥 ) / 𝑇 ) ) = ( ⌊ ‘ ( ( 𝐵 − ( 𝑆 ‘ ( 𝐽 + 1 ) ) ) / 𝑇 ) ) ) |
| 23 |
22
|
oveq1d |
⊢ ( 𝑥 = ( 𝑆 ‘ ( 𝐽 + 1 ) ) → ( ( ⌊ ‘ ( ( 𝐵 − 𝑥 ) / 𝑇 ) ) · 𝑇 ) = ( ( ⌊ ‘ ( ( 𝐵 − ( 𝑆 ‘ ( 𝐽 + 1 ) ) ) / 𝑇 ) ) · 𝑇 ) ) |
| 24 |
19 23
|
oveq12d |
⊢ ( 𝑥 = ( 𝑆 ‘ ( 𝐽 + 1 ) ) → ( 𝑥 + ( ( ⌊ ‘ ( ( 𝐵 − 𝑥 ) / 𝑇 ) ) · 𝑇 ) ) = ( ( 𝑆 ‘ ( 𝐽 + 1 ) ) + ( ( ⌊ ‘ ( ( 𝐵 − ( 𝑆 ‘ ( 𝐽 + 1 ) ) ) / 𝑇 ) ) · 𝑇 ) ) ) |
| 25 |
24
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑥 = ( 𝑆 ‘ ( 𝐽 + 1 ) ) ) → ( 𝑥 + ( ( ⌊ ‘ ( ( 𝐵 − 𝑥 ) / 𝑇 ) ) · 𝑇 ) ) = ( ( 𝑆 ‘ ( 𝐽 + 1 ) ) + ( ( ⌊ ‘ ( ( 𝐵 − ( 𝑆 ‘ ( 𝐽 + 1 ) ) ) / 𝑇 ) ) · 𝑇 ) ) ) |
| 26 |
1 2 3 4 5 6 7 8 9 10 11
|
fourierdlem54 |
⊢ ( 𝜑 → ( ( 𝑁 ∈ ℕ ∧ 𝑆 ∈ ( 𝑂 ‘ 𝑁 ) ) ∧ 𝑆 Isom < , < ( ( 0 ... 𝑁 ) , 𝐻 ) ) ) |
| 27 |
26
|
simpld |
⊢ ( 𝜑 → ( 𝑁 ∈ ℕ ∧ 𝑆 ∈ ( 𝑂 ‘ 𝑁 ) ) ) |
| 28 |
27
|
simprd |
⊢ ( 𝜑 → 𝑆 ∈ ( 𝑂 ‘ 𝑁 ) ) |
| 29 |
27
|
simpld |
⊢ ( 𝜑 → 𝑁 ∈ ℕ ) |
| 30 |
8
|
fourierdlem2 |
⊢ ( 𝑁 ∈ ℕ → ( 𝑆 ∈ ( 𝑂 ‘ 𝑁 ) ↔ ( 𝑆 ∈ ( ℝ ↑m ( 0 ... 𝑁 ) ) ∧ ( ( ( 𝑆 ‘ 0 ) = 𝐶 ∧ ( 𝑆 ‘ 𝑁 ) = 𝐷 ) ∧ ∀ 𝑖 ∈ ( 0 ..^ 𝑁 ) ( 𝑆 ‘ 𝑖 ) < ( 𝑆 ‘ ( 𝑖 + 1 ) ) ) ) ) ) |
| 31 |
29 30
|
syl |
⊢ ( 𝜑 → ( 𝑆 ∈ ( 𝑂 ‘ 𝑁 ) ↔ ( 𝑆 ∈ ( ℝ ↑m ( 0 ... 𝑁 ) ) ∧ ( ( ( 𝑆 ‘ 0 ) = 𝐶 ∧ ( 𝑆 ‘ 𝑁 ) = 𝐷 ) ∧ ∀ 𝑖 ∈ ( 0 ..^ 𝑁 ) ( 𝑆 ‘ 𝑖 ) < ( 𝑆 ‘ ( 𝑖 + 1 ) ) ) ) ) ) |
| 32 |
28 31
|
mpbid |
⊢ ( 𝜑 → ( 𝑆 ∈ ( ℝ ↑m ( 0 ... 𝑁 ) ) ∧ ( ( ( 𝑆 ‘ 0 ) = 𝐶 ∧ ( 𝑆 ‘ 𝑁 ) = 𝐷 ) ∧ ∀ 𝑖 ∈ ( 0 ..^ 𝑁 ) ( 𝑆 ‘ 𝑖 ) < ( 𝑆 ‘ ( 𝑖 + 1 ) ) ) ) ) |
| 33 |
32
|
simpld |
⊢ ( 𝜑 → 𝑆 ∈ ( ℝ ↑m ( 0 ... 𝑁 ) ) ) |
| 34 |
|
elmapi |
⊢ ( 𝑆 ∈ ( ℝ ↑m ( 0 ... 𝑁 ) ) → 𝑆 : ( 0 ... 𝑁 ) ⟶ ℝ ) |
| 35 |
33 34
|
syl |
⊢ ( 𝜑 → 𝑆 : ( 0 ... 𝑁 ) ⟶ ℝ ) |
| 36 |
|
fzofzp1 |
⊢ ( 𝐽 ∈ ( 0 ..^ 𝑁 ) → ( 𝐽 + 1 ) ∈ ( 0 ... 𝑁 ) ) |
| 37 |
14 36
|
syl |
⊢ ( 𝜑 → ( 𝐽 + 1 ) ∈ ( 0 ... 𝑁 ) ) |
| 38 |
35 37
|
ffvelcdmd |
⊢ ( 𝜑 → ( 𝑆 ‘ ( 𝐽 + 1 ) ) ∈ ℝ ) |
| 39 |
2 3 4
|
fourierdlem11 |
⊢ ( 𝜑 → ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵 ) ) |
| 40 |
39
|
simp2d |
⊢ ( 𝜑 → 𝐵 ∈ ℝ ) |
| 41 |
40 38
|
resubcld |
⊢ ( 𝜑 → ( 𝐵 − ( 𝑆 ‘ ( 𝐽 + 1 ) ) ) ∈ ℝ ) |
| 42 |
39
|
simp1d |
⊢ ( 𝜑 → 𝐴 ∈ ℝ ) |
| 43 |
40 42
|
resubcld |
⊢ ( 𝜑 → ( 𝐵 − 𝐴 ) ∈ ℝ ) |
| 44 |
1 43
|
eqeltrid |
⊢ ( 𝜑 → 𝑇 ∈ ℝ ) |
| 45 |
39
|
simp3d |
⊢ ( 𝜑 → 𝐴 < 𝐵 ) |
| 46 |
42 40
|
posdifd |
⊢ ( 𝜑 → ( 𝐴 < 𝐵 ↔ 0 < ( 𝐵 − 𝐴 ) ) ) |
| 47 |
45 46
|
mpbid |
⊢ ( 𝜑 → 0 < ( 𝐵 − 𝐴 ) ) |
| 48 |
47 1
|
breqtrrdi |
⊢ ( 𝜑 → 0 < 𝑇 ) |
| 49 |
48
|
gt0ne0d |
⊢ ( 𝜑 → 𝑇 ≠ 0 ) |
| 50 |
41 44 49
|
redivcld |
⊢ ( 𝜑 → ( ( 𝐵 − ( 𝑆 ‘ ( 𝐽 + 1 ) ) ) / 𝑇 ) ∈ ℝ ) |
| 51 |
50
|
flcld |
⊢ ( 𝜑 → ( ⌊ ‘ ( ( 𝐵 − ( 𝑆 ‘ ( 𝐽 + 1 ) ) ) / 𝑇 ) ) ∈ ℤ ) |
| 52 |
51
|
zred |
⊢ ( 𝜑 → ( ⌊ ‘ ( ( 𝐵 − ( 𝑆 ‘ ( 𝐽 + 1 ) ) ) / 𝑇 ) ) ∈ ℝ ) |
| 53 |
52 44
|
remulcld |
⊢ ( 𝜑 → ( ( ⌊ ‘ ( ( 𝐵 − ( 𝑆 ‘ ( 𝐽 + 1 ) ) ) / 𝑇 ) ) · 𝑇 ) ∈ ℝ ) |
| 54 |
38 53
|
readdcld |
⊢ ( 𝜑 → ( ( 𝑆 ‘ ( 𝐽 + 1 ) ) + ( ( ⌊ ‘ ( ( 𝐵 − ( 𝑆 ‘ ( 𝐽 + 1 ) ) ) / 𝑇 ) ) · 𝑇 ) ) ∈ ℝ ) |
| 55 |
18 25 38 54
|
fvmptd |
⊢ ( 𝜑 → ( 𝐸 ‘ ( 𝑆 ‘ ( 𝐽 + 1 ) ) ) = ( ( 𝑆 ‘ ( 𝐽 + 1 ) ) + ( ( ⌊ ‘ ( ( 𝐵 − ( 𝑆 ‘ ( 𝐽 + 1 ) ) ) / 𝑇 ) ) · 𝑇 ) ) ) |
| 56 |
55 54
|
eqeltrd |
⊢ ( 𝜑 → ( 𝐸 ‘ ( 𝑆 ‘ ( 𝐽 + 1 ) ) ) ∈ ℝ ) |
| 57 |
2
|
fourierdlem2 |
⊢ ( 𝑀 ∈ ℕ → ( 𝑄 ∈ ( 𝑃 ‘ 𝑀 ) ↔ ( 𝑄 ∈ ( ℝ ↑m ( 0 ... 𝑀 ) ) ∧ ( ( ( 𝑄 ‘ 0 ) = 𝐴 ∧ ( 𝑄 ‘ 𝑀 ) = 𝐵 ) ∧ ∀ 𝑖 ∈ ( 0 ..^ 𝑀 ) ( 𝑄 ‘ 𝑖 ) < ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) ) ) |
| 58 |
3 57
|
syl |
⊢ ( 𝜑 → ( 𝑄 ∈ ( 𝑃 ‘ 𝑀 ) ↔ ( 𝑄 ∈ ( ℝ ↑m ( 0 ... 𝑀 ) ) ∧ ( ( ( 𝑄 ‘ 0 ) = 𝐴 ∧ ( 𝑄 ‘ 𝑀 ) = 𝐵 ) ∧ ∀ 𝑖 ∈ ( 0 ..^ 𝑀 ) ( 𝑄 ‘ 𝑖 ) < ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) ) ) |
| 59 |
4 58
|
mpbid |
⊢ ( 𝜑 → ( 𝑄 ∈ ( ℝ ↑m ( 0 ... 𝑀 ) ) ∧ ( ( ( 𝑄 ‘ 0 ) = 𝐴 ∧ ( 𝑄 ‘ 𝑀 ) = 𝐵 ) ∧ ∀ 𝑖 ∈ ( 0 ..^ 𝑀 ) ( 𝑄 ‘ 𝑖 ) < ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) ) |
| 60 |
59
|
simpld |
⊢ ( 𝜑 → 𝑄 ∈ ( ℝ ↑m ( 0 ... 𝑀 ) ) ) |
| 61 |
|
elmapi |
⊢ ( 𝑄 ∈ ( ℝ ↑m ( 0 ... 𝑀 ) ) → 𝑄 : ( 0 ... 𝑀 ) ⟶ ℝ ) |
| 62 |
60 61
|
syl |
⊢ ( 𝜑 → 𝑄 : ( 0 ... 𝑀 ) ⟶ ℝ ) |
| 63 |
62 13
|
ffvelcdmd |
⊢ ( 𝜑 → ( 𝑄 ‘ 𝐾 ) ∈ ℝ ) |
| 64 |
5
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑄 ‘ 𝐾 ) < ( 𝐸 ‘ ( 𝑆 ‘ ( 𝐽 + 1 ) ) ) ) → 𝐶 ∈ ℝ ) |
| 65 |
6
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑄 ‘ 𝐾 ) < ( 𝐸 ‘ ( 𝑆 ‘ ( 𝐽 + 1 ) ) ) ) → 𝐷 ∈ ℝ ) |
| 66 |
42
|
rexrd |
⊢ ( 𝜑 → 𝐴 ∈ ℝ* ) |
| 67 |
|
iocssre |
⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ ) → ( 𝐴 (,] 𝐵 ) ⊆ ℝ ) |
| 68 |
66 40 67
|
syl2anc |
⊢ ( 𝜑 → ( 𝐴 (,] 𝐵 ) ⊆ ℝ ) |
| 69 |
42 40 45 1 12
|
fourierdlem4 |
⊢ ( 𝜑 → 𝐸 : ℝ ⟶ ( 𝐴 (,] 𝐵 ) ) |
| 70 |
|
elfzofz |
⊢ ( 𝐽 ∈ ( 0 ..^ 𝑁 ) → 𝐽 ∈ ( 0 ... 𝑁 ) ) |
| 71 |
14 70
|
syl |
⊢ ( 𝜑 → 𝐽 ∈ ( 0 ... 𝑁 ) ) |
| 72 |
35 71
|
ffvelcdmd |
⊢ ( 𝜑 → ( 𝑆 ‘ 𝐽 ) ∈ ℝ ) |
| 73 |
38
|
rexrd |
⊢ ( 𝜑 → ( 𝑆 ‘ ( 𝐽 + 1 ) ) ∈ ℝ* ) |
| 74 |
|
elico2 |
⊢ ( ( ( 𝑆 ‘ 𝐽 ) ∈ ℝ ∧ ( 𝑆 ‘ ( 𝐽 + 1 ) ) ∈ ℝ* ) → ( 𝑌 ∈ ( ( 𝑆 ‘ 𝐽 ) [,) ( 𝑆 ‘ ( 𝐽 + 1 ) ) ) ↔ ( 𝑌 ∈ ℝ ∧ ( 𝑆 ‘ 𝐽 ) ≤ 𝑌 ∧ 𝑌 < ( 𝑆 ‘ ( 𝐽 + 1 ) ) ) ) ) |
| 75 |
72 73 74
|
syl2anc |
⊢ ( 𝜑 → ( 𝑌 ∈ ( ( 𝑆 ‘ 𝐽 ) [,) ( 𝑆 ‘ ( 𝐽 + 1 ) ) ) ↔ ( 𝑌 ∈ ℝ ∧ ( 𝑆 ‘ 𝐽 ) ≤ 𝑌 ∧ 𝑌 < ( 𝑆 ‘ ( 𝐽 + 1 ) ) ) ) ) |
| 76 |
15 75
|
mpbid |
⊢ ( 𝜑 → ( 𝑌 ∈ ℝ ∧ ( 𝑆 ‘ 𝐽 ) ≤ 𝑌 ∧ 𝑌 < ( 𝑆 ‘ ( 𝐽 + 1 ) ) ) ) |
| 77 |
76
|
simp1d |
⊢ ( 𝜑 → 𝑌 ∈ ℝ ) |
| 78 |
69 77
|
ffvelcdmd |
⊢ ( 𝜑 → ( 𝐸 ‘ 𝑌 ) ∈ ( 𝐴 (,] 𝐵 ) ) |
| 79 |
68 78
|
sseldd |
⊢ ( 𝜑 → ( 𝐸 ‘ 𝑌 ) ∈ ℝ ) |
| 80 |
79 77
|
resubcld |
⊢ ( 𝜑 → ( ( 𝐸 ‘ 𝑌 ) − 𝑌 ) ∈ ℝ ) |
| 81 |
63 80
|
resubcld |
⊢ ( 𝜑 → ( ( 𝑄 ‘ 𝐾 ) − ( ( 𝐸 ‘ 𝑌 ) − 𝑌 ) ) ∈ ℝ ) |
| 82 |
81
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑄 ‘ 𝐾 ) < ( 𝐸 ‘ ( 𝑆 ‘ ( 𝐽 + 1 ) ) ) ) → ( ( 𝑄 ‘ 𝐾 ) − ( ( 𝐸 ‘ 𝑌 ) − 𝑌 ) ) ∈ ℝ ) |
| 83 |
|
icossicc |
⊢ ( ( 𝑆 ‘ 𝐽 ) [,) ( 𝑆 ‘ ( 𝐽 + 1 ) ) ) ⊆ ( ( 𝑆 ‘ 𝐽 ) [,] ( 𝑆 ‘ ( 𝐽 + 1 ) ) ) |
| 84 |
5
|
rexrd |
⊢ ( 𝜑 → 𝐶 ∈ ℝ* ) |
| 85 |
6
|
rexrd |
⊢ ( 𝜑 → 𝐷 ∈ ℝ* ) |
| 86 |
8 29 28
|
fourierdlem15 |
⊢ ( 𝜑 → 𝑆 : ( 0 ... 𝑁 ) ⟶ ( 𝐶 [,] 𝐷 ) ) |
| 87 |
84 85 86 14
|
fourierdlem8 |
⊢ ( 𝜑 → ( ( 𝑆 ‘ 𝐽 ) [,] ( 𝑆 ‘ ( 𝐽 + 1 ) ) ) ⊆ ( 𝐶 [,] 𝐷 ) ) |
| 88 |
83 87
|
sstrid |
⊢ ( 𝜑 → ( ( 𝑆 ‘ 𝐽 ) [,) ( 𝑆 ‘ ( 𝐽 + 1 ) ) ) ⊆ ( 𝐶 [,] 𝐷 ) ) |
| 89 |
88 15
|
sseldd |
⊢ ( 𝜑 → 𝑌 ∈ ( 𝐶 [,] 𝐷 ) ) |
| 90 |
|
elicc2 |
⊢ ( ( 𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ ) → ( 𝑌 ∈ ( 𝐶 [,] 𝐷 ) ↔ ( 𝑌 ∈ ℝ ∧ 𝐶 ≤ 𝑌 ∧ 𝑌 ≤ 𝐷 ) ) ) |
| 91 |
5 6 90
|
syl2anc |
⊢ ( 𝜑 → ( 𝑌 ∈ ( 𝐶 [,] 𝐷 ) ↔ ( 𝑌 ∈ ℝ ∧ 𝐶 ≤ 𝑌 ∧ 𝑌 ≤ 𝐷 ) ) ) |
| 92 |
89 91
|
mpbid |
⊢ ( 𝜑 → ( 𝑌 ∈ ℝ ∧ 𝐶 ≤ 𝑌 ∧ 𝑌 ≤ 𝐷 ) ) |
| 93 |
92
|
simp2d |
⊢ ( 𝜑 → 𝐶 ≤ 𝑌 ) |
| 94 |
63 79
|
resubcld |
⊢ ( 𝜑 → ( ( 𝑄 ‘ 𝐾 ) − ( 𝐸 ‘ 𝑌 ) ) ∈ ℝ ) |
| 95 |
79 63
|
posdifd |
⊢ ( 𝜑 → ( ( 𝐸 ‘ 𝑌 ) < ( 𝑄 ‘ 𝐾 ) ↔ 0 < ( ( 𝑄 ‘ 𝐾 ) − ( 𝐸 ‘ 𝑌 ) ) ) ) |
| 96 |
16 95
|
mpbid |
⊢ ( 𝜑 → 0 < ( ( 𝑄 ‘ 𝐾 ) − ( 𝐸 ‘ 𝑌 ) ) ) |
| 97 |
94 96
|
elrpd |
⊢ ( 𝜑 → ( ( 𝑄 ‘ 𝐾 ) − ( 𝐸 ‘ 𝑌 ) ) ∈ ℝ+ ) |
| 98 |
77 97
|
ltaddrpd |
⊢ ( 𝜑 → 𝑌 < ( 𝑌 + ( ( 𝑄 ‘ 𝐾 ) − ( 𝐸 ‘ 𝑌 ) ) ) ) |
| 99 |
63
|
recnd |
⊢ ( 𝜑 → ( 𝑄 ‘ 𝐾 ) ∈ ℂ ) |
| 100 |
79
|
recnd |
⊢ ( 𝜑 → ( 𝐸 ‘ 𝑌 ) ∈ ℂ ) |
| 101 |
77
|
recnd |
⊢ ( 𝜑 → 𝑌 ∈ ℂ ) |
| 102 |
99 100 101
|
subsub3d |
⊢ ( 𝜑 → ( ( 𝑄 ‘ 𝐾 ) − ( ( 𝐸 ‘ 𝑌 ) − 𝑌 ) ) = ( ( ( 𝑄 ‘ 𝐾 ) + 𝑌 ) − ( 𝐸 ‘ 𝑌 ) ) ) |
| 103 |
99 101
|
addcomd |
⊢ ( 𝜑 → ( ( 𝑄 ‘ 𝐾 ) + 𝑌 ) = ( 𝑌 + ( 𝑄 ‘ 𝐾 ) ) ) |
| 104 |
103
|
oveq1d |
⊢ ( 𝜑 → ( ( ( 𝑄 ‘ 𝐾 ) + 𝑌 ) − ( 𝐸 ‘ 𝑌 ) ) = ( ( 𝑌 + ( 𝑄 ‘ 𝐾 ) ) − ( 𝐸 ‘ 𝑌 ) ) ) |
| 105 |
101 99 100
|
addsubassd |
⊢ ( 𝜑 → ( ( 𝑌 + ( 𝑄 ‘ 𝐾 ) ) − ( 𝐸 ‘ 𝑌 ) ) = ( 𝑌 + ( ( 𝑄 ‘ 𝐾 ) − ( 𝐸 ‘ 𝑌 ) ) ) ) |
| 106 |
102 104 105
|
3eqtrrd |
⊢ ( 𝜑 → ( 𝑌 + ( ( 𝑄 ‘ 𝐾 ) − ( 𝐸 ‘ 𝑌 ) ) ) = ( ( 𝑄 ‘ 𝐾 ) − ( ( 𝐸 ‘ 𝑌 ) − 𝑌 ) ) ) |
| 107 |
98 106
|
breqtrd |
⊢ ( 𝜑 → 𝑌 < ( ( 𝑄 ‘ 𝐾 ) − ( ( 𝐸 ‘ 𝑌 ) − 𝑌 ) ) ) |
| 108 |
5 77 81 93 107
|
lelttrd |
⊢ ( 𝜑 → 𝐶 < ( ( 𝑄 ‘ 𝐾 ) − ( ( 𝐸 ‘ 𝑌 ) − 𝑌 ) ) ) |
| 109 |
5 81 108
|
ltled |
⊢ ( 𝜑 → 𝐶 ≤ ( ( 𝑄 ‘ 𝐾 ) − ( ( 𝐸 ‘ 𝑌 ) − 𝑌 ) ) ) |
| 110 |
109
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑄 ‘ 𝐾 ) < ( 𝐸 ‘ ( 𝑆 ‘ ( 𝐽 + 1 ) ) ) ) → 𝐶 ≤ ( ( 𝑄 ‘ 𝐾 ) − ( ( 𝐸 ‘ 𝑌 ) − 𝑌 ) ) ) |
| 111 |
38
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑄 ‘ 𝐾 ) < ( 𝐸 ‘ ( 𝑆 ‘ ( 𝐽 + 1 ) ) ) ) → ( 𝑆 ‘ ( 𝐽 + 1 ) ) ∈ ℝ ) |
| 112 |
63
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑄 ‘ 𝐾 ) < ( 𝐸 ‘ ( 𝑆 ‘ ( 𝐽 + 1 ) ) ) ) → ( 𝑄 ‘ 𝐾 ) ∈ ℝ ) |
| 113 |
56 38
|
resubcld |
⊢ ( 𝜑 → ( ( 𝐸 ‘ ( 𝑆 ‘ ( 𝐽 + 1 ) ) ) − ( 𝑆 ‘ ( 𝐽 + 1 ) ) ) ∈ ℝ ) |
| 114 |
113
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑄 ‘ 𝐾 ) < ( 𝐸 ‘ ( 𝑆 ‘ ( 𝐽 + 1 ) ) ) ) → ( ( 𝐸 ‘ ( 𝑆 ‘ ( 𝐽 + 1 ) ) ) − ( 𝑆 ‘ ( 𝐽 + 1 ) ) ) ∈ ℝ ) |
| 115 |
112 114
|
resubcld |
⊢ ( ( 𝜑 ∧ ( 𝑄 ‘ 𝐾 ) < ( 𝐸 ‘ ( 𝑆 ‘ ( 𝐽 + 1 ) ) ) ) → ( ( 𝑄 ‘ 𝐾 ) − ( ( 𝐸 ‘ ( 𝑆 ‘ ( 𝐽 + 1 ) ) ) − ( 𝑆 ‘ ( 𝐽 + 1 ) ) ) ) ∈ ℝ ) |
| 116 |
76
|
simp3d |
⊢ ( 𝜑 → 𝑌 < ( 𝑆 ‘ ( 𝐽 + 1 ) ) ) |
| 117 |
77 38 116
|
ltled |
⊢ ( 𝜑 → 𝑌 ≤ ( 𝑆 ‘ ( 𝐽 + 1 ) ) ) |
| 118 |
42 40 45 1 12 77 38 117
|
fourierdlem7 |
⊢ ( 𝜑 → ( ( 𝐸 ‘ ( 𝑆 ‘ ( 𝐽 + 1 ) ) ) − ( 𝑆 ‘ ( 𝐽 + 1 ) ) ) ≤ ( ( 𝐸 ‘ 𝑌 ) − 𝑌 ) ) |
| 119 |
113 80 63 118
|
lesub2dd |
⊢ ( 𝜑 → ( ( 𝑄 ‘ 𝐾 ) − ( ( 𝐸 ‘ 𝑌 ) − 𝑌 ) ) ≤ ( ( 𝑄 ‘ 𝐾 ) − ( ( 𝐸 ‘ ( 𝑆 ‘ ( 𝐽 + 1 ) ) ) − ( 𝑆 ‘ ( 𝐽 + 1 ) ) ) ) ) |
| 120 |
119
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑄 ‘ 𝐾 ) < ( 𝐸 ‘ ( 𝑆 ‘ ( 𝐽 + 1 ) ) ) ) → ( ( 𝑄 ‘ 𝐾 ) − ( ( 𝐸 ‘ 𝑌 ) − 𝑌 ) ) ≤ ( ( 𝑄 ‘ 𝐾 ) − ( ( 𝐸 ‘ ( 𝑆 ‘ ( 𝐽 + 1 ) ) ) − ( 𝑆 ‘ ( 𝐽 + 1 ) ) ) ) ) |
| 121 |
99
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑄 ‘ 𝐾 ) < ( 𝐸 ‘ ( 𝑆 ‘ ( 𝐽 + 1 ) ) ) ) → ( 𝑄 ‘ 𝐾 ) ∈ ℂ ) |
| 122 |
56
|
recnd |
⊢ ( 𝜑 → ( 𝐸 ‘ ( 𝑆 ‘ ( 𝐽 + 1 ) ) ) ∈ ℂ ) |
| 123 |
122
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑄 ‘ 𝐾 ) < ( 𝐸 ‘ ( 𝑆 ‘ ( 𝐽 + 1 ) ) ) ) → ( 𝐸 ‘ ( 𝑆 ‘ ( 𝐽 + 1 ) ) ) ∈ ℂ ) |
| 124 |
111
|
recnd |
⊢ ( ( 𝜑 ∧ ( 𝑄 ‘ 𝐾 ) < ( 𝐸 ‘ ( 𝑆 ‘ ( 𝐽 + 1 ) ) ) ) → ( 𝑆 ‘ ( 𝐽 + 1 ) ) ∈ ℂ ) |
| 125 |
121 123 124
|
subsubd |
⊢ ( ( 𝜑 ∧ ( 𝑄 ‘ 𝐾 ) < ( 𝐸 ‘ ( 𝑆 ‘ ( 𝐽 + 1 ) ) ) ) → ( ( 𝑄 ‘ 𝐾 ) − ( ( 𝐸 ‘ ( 𝑆 ‘ ( 𝐽 + 1 ) ) ) − ( 𝑆 ‘ ( 𝐽 + 1 ) ) ) ) = ( ( ( 𝑄 ‘ 𝐾 ) − ( 𝐸 ‘ ( 𝑆 ‘ ( 𝐽 + 1 ) ) ) ) + ( 𝑆 ‘ ( 𝐽 + 1 ) ) ) ) |
| 126 |
99 122
|
subcld |
⊢ ( 𝜑 → ( ( 𝑄 ‘ 𝐾 ) − ( 𝐸 ‘ ( 𝑆 ‘ ( 𝐽 + 1 ) ) ) ) ∈ ℂ ) |
| 127 |
38
|
recnd |
⊢ ( 𝜑 → ( 𝑆 ‘ ( 𝐽 + 1 ) ) ∈ ℂ ) |
| 128 |
126 127
|
addcomd |
⊢ ( 𝜑 → ( ( ( 𝑄 ‘ 𝐾 ) − ( 𝐸 ‘ ( 𝑆 ‘ ( 𝐽 + 1 ) ) ) ) + ( 𝑆 ‘ ( 𝐽 + 1 ) ) ) = ( ( 𝑆 ‘ ( 𝐽 + 1 ) ) + ( ( 𝑄 ‘ 𝐾 ) − ( 𝐸 ‘ ( 𝑆 ‘ ( 𝐽 + 1 ) ) ) ) ) ) |
| 129 |
128
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑄 ‘ 𝐾 ) < ( 𝐸 ‘ ( 𝑆 ‘ ( 𝐽 + 1 ) ) ) ) → ( ( ( 𝑄 ‘ 𝐾 ) − ( 𝐸 ‘ ( 𝑆 ‘ ( 𝐽 + 1 ) ) ) ) + ( 𝑆 ‘ ( 𝐽 + 1 ) ) ) = ( ( 𝑆 ‘ ( 𝐽 + 1 ) ) + ( ( 𝑄 ‘ 𝐾 ) − ( 𝐸 ‘ ( 𝑆 ‘ ( 𝐽 + 1 ) ) ) ) ) ) |
| 130 |
125 129
|
eqtrd |
⊢ ( ( 𝜑 ∧ ( 𝑄 ‘ 𝐾 ) < ( 𝐸 ‘ ( 𝑆 ‘ ( 𝐽 + 1 ) ) ) ) → ( ( 𝑄 ‘ 𝐾 ) − ( ( 𝐸 ‘ ( 𝑆 ‘ ( 𝐽 + 1 ) ) ) − ( 𝑆 ‘ ( 𝐽 + 1 ) ) ) ) = ( ( 𝑆 ‘ ( 𝐽 + 1 ) ) + ( ( 𝑄 ‘ 𝐾 ) − ( 𝐸 ‘ ( 𝑆 ‘ ( 𝐽 + 1 ) ) ) ) ) ) |
| 131 |
|
simpr |
⊢ ( ( 𝜑 ∧ ( 𝑄 ‘ 𝐾 ) < ( 𝐸 ‘ ( 𝑆 ‘ ( 𝐽 + 1 ) ) ) ) → ( 𝑄 ‘ 𝐾 ) < ( 𝐸 ‘ ( 𝑆 ‘ ( 𝐽 + 1 ) ) ) ) |
| 132 |
56
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑄 ‘ 𝐾 ) < ( 𝐸 ‘ ( 𝑆 ‘ ( 𝐽 + 1 ) ) ) ) → ( 𝐸 ‘ ( 𝑆 ‘ ( 𝐽 + 1 ) ) ) ∈ ℝ ) |
| 133 |
112 132
|
sublt0d |
⊢ ( ( 𝜑 ∧ ( 𝑄 ‘ 𝐾 ) < ( 𝐸 ‘ ( 𝑆 ‘ ( 𝐽 + 1 ) ) ) ) → ( ( ( 𝑄 ‘ 𝐾 ) − ( 𝐸 ‘ ( 𝑆 ‘ ( 𝐽 + 1 ) ) ) ) < 0 ↔ ( 𝑄 ‘ 𝐾 ) < ( 𝐸 ‘ ( 𝑆 ‘ ( 𝐽 + 1 ) ) ) ) ) |
| 134 |
131 133
|
mpbird |
⊢ ( ( 𝜑 ∧ ( 𝑄 ‘ 𝐾 ) < ( 𝐸 ‘ ( 𝑆 ‘ ( 𝐽 + 1 ) ) ) ) → ( ( 𝑄 ‘ 𝐾 ) − ( 𝐸 ‘ ( 𝑆 ‘ ( 𝐽 + 1 ) ) ) ) < 0 ) |
| 135 |
112 132
|
resubcld |
⊢ ( ( 𝜑 ∧ ( 𝑄 ‘ 𝐾 ) < ( 𝐸 ‘ ( 𝑆 ‘ ( 𝐽 + 1 ) ) ) ) → ( ( 𝑄 ‘ 𝐾 ) − ( 𝐸 ‘ ( 𝑆 ‘ ( 𝐽 + 1 ) ) ) ) ∈ ℝ ) |
| 136 |
|
ltaddneg |
⊢ ( ( ( ( 𝑄 ‘ 𝐾 ) − ( 𝐸 ‘ ( 𝑆 ‘ ( 𝐽 + 1 ) ) ) ) ∈ ℝ ∧ ( 𝑆 ‘ ( 𝐽 + 1 ) ) ∈ ℝ ) → ( ( ( 𝑄 ‘ 𝐾 ) − ( 𝐸 ‘ ( 𝑆 ‘ ( 𝐽 + 1 ) ) ) ) < 0 ↔ ( ( 𝑆 ‘ ( 𝐽 + 1 ) ) + ( ( 𝑄 ‘ 𝐾 ) − ( 𝐸 ‘ ( 𝑆 ‘ ( 𝐽 + 1 ) ) ) ) ) < ( 𝑆 ‘ ( 𝐽 + 1 ) ) ) ) |
| 137 |
135 111 136
|
syl2anc |
⊢ ( ( 𝜑 ∧ ( 𝑄 ‘ 𝐾 ) < ( 𝐸 ‘ ( 𝑆 ‘ ( 𝐽 + 1 ) ) ) ) → ( ( ( 𝑄 ‘ 𝐾 ) − ( 𝐸 ‘ ( 𝑆 ‘ ( 𝐽 + 1 ) ) ) ) < 0 ↔ ( ( 𝑆 ‘ ( 𝐽 + 1 ) ) + ( ( 𝑄 ‘ 𝐾 ) − ( 𝐸 ‘ ( 𝑆 ‘ ( 𝐽 + 1 ) ) ) ) ) < ( 𝑆 ‘ ( 𝐽 + 1 ) ) ) ) |
| 138 |
134 137
|
mpbid |
⊢ ( ( 𝜑 ∧ ( 𝑄 ‘ 𝐾 ) < ( 𝐸 ‘ ( 𝑆 ‘ ( 𝐽 + 1 ) ) ) ) → ( ( 𝑆 ‘ ( 𝐽 + 1 ) ) + ( ( 𝑄 ‘ 𝐾 ) − ( 𝐸 ‘ ( 𝑆 ‘ ( 𝐽 + 1 ) ) ) ) ) < ( 𝑆 ‘ ( 𝐽 + 1 ) ) ) |
| 139 |
130 138
|
eqbrtrd |
⊢ ( ( 𝜑 ∧ ( 𝑄 ‘ 𝐾 ) < ( 𝐸 ‘ ( 𝑆 ‘ ( 𝐽 + 1 ) ) ) ) → ( ( 𝑄 ‘ 𝐾 ) − ( ( 𝐸 ‘ ( 𝑆 ‘ ( 𝐽 + 1 ) ) ) − ( 𝑆 ‘ ( 𝐽 + 1 ) ) ) ) < ( 𝑆 ‘ ( 𝐽 + 1 ) ) ) |
| 140 |
82 115 111 120 139
|
lelttrd |
⊢ ( ( 𝜑 ∧ ( 𝑄 ‘ 𝐾 ) < ( 𝐸 ‘ ( 𝑆 ‘ ( 𝐽 + 1 ) ) ) ) → ( ( 𝑄 ‘ 𝐾 ) − ( ( 𝐸 ‘ 𝑌 ) − 𝑌 ) ) < ( 𝑆 ‘ ( 𝐽 + 1 ) ) ) |
| 141 |
86 37
|
ffvelcdmd |
⊢ ( 𝜑 → ( 𝑆 ‘ ( 𝐽 + 1 ) ) ∈ ( 𝐶 [,] 𝐷 ) ) |
| 142 |
|
elicc2 |
⊢ ( ( 𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ ) → ( ( 𝑆 ‘ ( 𝐽 + 1 ) ) ∈ ( 𝐶 [,] 𝐷 ) ↔ ( ( 𝑆 ‘ ( 𝐽 + 1 ) ) ∈ ℝ ∧ 𝐶 ≤ ( 𝑆 ‘ ( 𝐽 + 1 ) ) ∧ ( 𝑆 ‘ ( 𝐽 + 1 ) ) ≤ 𝐷 ) ) ) |
| 143 |
5 6 142
|
syl2anc |
⊢ ( 𝜑 → ( ( 𝑆 ‘ ( 𝐽 + 1 ) ) ∈ ( 𝐶 [,] 𝐷 ) ↔ ( ( 𝑆 ‘ ( 𝐽 + 1 ) ) ∈ ℝ ∧ 𝐶 ≤ ( 𝑆 ‘ ( 𝐽 + 1 ) ) ∧ ( 𝑆 ‘ ( 𝐽 + 1 ) ) ≤ 𝐷 ) ) ) |
| 144 |
141 143
|
mpbid |
⊢ ( 𝜑 → ( ( 𝑆 ‘ ( 𝐽 + 1 ) ) ∈ ℝ ∧ 𝐶 ≤ ( 𝑆 ‘ ( 𝐽 + 1 ) ) ∧ ( 𝑆 ‘ ( 𝐽 + 1 ) ) ≤ 𝐷 ) ) |
| 145 |
144
|
simp3d |
⊢ ( 𝜑 → ( 𝑆 ‘ ( 𝐽 + 1 ) ) ≤ 𝐷 ) |
| 146 |
145
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑄 ‘ 𝐾 ) < ( 𝐸 ‘ ( 𝑆 ‘ ( 𝐽 + 1 ) ) ) ) → ( 𝑆 ‘ ( 𝐽 + 1 ) ) ≤ 𝐷 ) |
| 147 |
82 111 65 140 146
|
ltletrd |
⊢ ( ( 𝜑 ∧ ( 𝑄 ‘ 𝐾 ) < ( 𝐸 ‘ ( 𝑆 ‘ ( 𝐽 + 1 ) ) ) ) → ( ( 𝑄 ‘ 𝐾 ) − ( ( 𝐸 ‘ 𝑌 ) − 𝑌 ) ) < 𝐷 ) |
| 148 |
82 65 147
|
ltled |
⊢ ( ( 𝜑 ∧ ( 𝑄 ‘ 𝐾 ) < ( 𝐸 ‘ ( 𝑆 ‘ ( 𝐽 + 1 ) ) ) ) → ( ( 𝑄 ‘ 𝐾 ) − ( ( 𝐸 ‘ 𝑌 ) − 𝑌 ) ) ≤ 𝐷 ) |
| 149 |
64 65 82 110 148
|
eliccd |
⊢ ( ( 𝜑 ∧ ( 𝑄 ‘ 𝐾 ) < ( 𝐸 ‘ ( 𝑆 ‘ ( 𝐽 + 1 ) ) ) ) → ( ( 𝑄 ‘ 𝐾 ) − ( ( 𝐸 ‘ 𝑌 ) − 𝑌 ) ) ∈ ( 𝐶 [,] 𝐷 ) ) |
| 150 |
|
id |
⊢ ( 𝑥 = 𝑌 → 𝑥 = 𝑌 ) |
| 151 |
|
oveq2 |
⊢ ( 𝑥 = 𝑌 → ( 𝐵 − 𝑥 ) = ( 𝐵 − 𝑌 ) ) |
| 152 |
151
|
oveq1d |
⊢ ( 𝑥 = 𝑌 → ( ( 𝐵 − 𝑥 ) / 𝑇 ) = ( ( 𝐵 − 𝑌 ) / 𝑇 ) ) |
| 153 |
152
|
fveq2d |
⊢ ( 𝑥 = 𝑌 → ( ⌊ ‘ ( ( 𝐵 − 𝑥 ) / 𝑇 ) ) = ( ⌊ ‘ ( ( 𝐵 − 𝑌 ) / 𝑇 ) ) ) |
| 154 |
153
|
oveq1d |
⊢ ( 𝑥 = 𝑌 → ( ( ⌊ ‘ ( ( 𝐵 − 𝑥 ) / 𝑇 ) ) · 𝑇 ) = ( ( ⌊ ‘ ( ( 𝐵 − 𝑌 ) / 𝑇 ) ) · 𝑇 ) ) |
| 155 |
150 154
|
oveq12d |
⊢ ( 𝑥 = 𝑌 → ( 𝑥 + ( ( ⌊ ‘ ( ( 𝐵 − 𝑥 ) / 𝑇 ) ) · 𝑇 ) ) = ( 𝑌 + ( ( ⌊ ‘ ( ( 𝐵 − 𝑌 ) / 𝑇 ) ) · 𝑇 ) ) ) |
| 156 |
155
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑥 = 𝑌 ) → ( 𝑥 + ( ( ⌊ ‘ ( ( 𝐵 − 𝑥 ) / 𝑇 ) ) · 𝑇 ) ) = ( 𝑌 + ( ( ⌊ ‘ ( ( 𝐵 − 𝑌 ) / 𝑇 ) ) · 𝑇 ) ) ) |
| 157 |
40 77
|
resubcld |
⊢ ( 𝜑 → ( 𝐵 − 𝑌 ) ∈ ℝ ) |
| 158 |
157 44 49
|
redivcld |
⊢ ( 𝜑 → ( ( 𝐵 − 𝑌 ) / 𝑇 ) ∈ ℝ ) |
| 159 |
158
|
flcld |
⊢ ( 𝜑 → ( ⌊ ‘ ( ( 𝐵 − 𝑌 ) / 𝑇 ) ) ∈ ℤ ) |
| 160 |
159
|
zred |
⊢ ( 𝜑 → ( ⌊ ‘ ( ( 𝐵 − 𝑌 ) / 𝑇 ) ) ∈ ℝ ) |
| 161 |
160 44
|
remulcld |
⊢ ( 𝜑 → ( ( ⌊ ‘ ( ( 𝐵 − 𝑌 ) / 𝑇 ) ) · 𝑇 ) ∈ ℝ ) |
| 162 |
77 161
|
readdcld |
⊢ ( 𝜑 → ( 𝑌 + ( ( ⌊ ‘ ( ( 𝐵 − 𝑌 ) / 𝑇 ) ) · 𝑇 ) ) ∈ ℝ ) |
| 163 |
18 156 77 162
|
fvmptd |
⊢ ( 𝜑 → ( 𝐸 ‘ 𝑌 ) = ( 𝑌 + ( ( ⌊ ‘ ( ( 𝐵 − 𝑌 ) / 𝑇 ) ) · 𝑇 ) ) ) |
| 164 |
163
|
oveq1d |
⊢ ( 𝜑 → ( ( 𝐸 ‘ 𝑌 ) − 𝑌 ) = ( ( 𝑌 + ( ( ⌊ ‘ ( ( 𝐵 − 𝑌 ) / 𝑇 ) ) · 𝑇 ) ) − 𝑌 ) ) |
| 165 |
164
|
oveq1d |
⊢ ( 𝜑 → ( ( ( 𝐸 ‘ 𝑌 ) − 𝑌 ) / 𝑇 ) = ( ( ( 𝑌 + ( ( ⌊ ‘ ( ( 𝐵 − 𝑌 ) / 𝑇 ) ) · 𝑇 ) ) − 𝑌 ) / 𝑇 ) ) |
| 166 |
161
|
recnd |
⊢ ( 𝜑 → ( ( ⌊ ‘ ( ( 𝐵 − 𝑌 ) / 𝑇 ) ) · 𝑇 ) ∈ ℂ ) |
| 167 |
101 166
|
pncan2d |
⊢ ( 𝜑 → ( ( 𝑌 + ( ( ⌊ ‘ ( ( 𝐵 − 𝑌 ) / 𝑇 ) ) · 𝑇 ) ) − 𝑌 ) = ( ( ⌊ ‘ ( ( 𝐵 − 𝑌 ) / 𝑇 ) ) · 𝑇 ) ) |
| 168 |
167
|
oveq1d |
⊢ ( 𝜑 → ( ( ( 𝑌 + ( ( ⌊ ‘ ( ( 𝐵 − 𝑌 ) / 𝑇 ) ) · 𝑇 ) ) − 𝑌 ) / 𝑇 ) = ( ( ( ⌊ ‘ ( ( 𝐵 − 𝑌 ) / 𝑇 ) ) · 𝑇 ) / 𝑇 ) ) |
| 169 |
160
|
recnd |
⊢ ( 𝜑 → ( ⌊ ‘ ( ( 𝐵 − 𝑌 ) / 𝑇 ) ) ∈ ℂ ) |
| 170 |
44
|
recnd |
⊢ ( 𝜑 → 𝑇 ∈ ℂ ) |
| 171 |
169 170 49
|
divcan4d |
⊢ ( 𝜑 → ( ( ( ⌊ ‘ ( ( 𝐵 − 𝑌 ) / 𝑇 ) ) · 𝑇 ) / 𝑇 ) = ( ⌊ ‘ ( ( 𝐵 − 𝑌 ) / 𝑇 ) ) ) |
| 172 |
165 168 171
|
3eqtrd |
⊢ ( 𝜑 → ( ( ( 𝐸 ‘ 𝑌 ) − 𝑌 ) / 𝑇 ) = ( ⌊ ‘ ( ( 𝐵 − 𝑌 ) / 𝑇 ) ) ) |
| 173 |
172 159
|
eqeltrd |
⊢ ( 𝜑 → ( ( ( 𝐸 ‘ 𝑌 ) − 𝑌 ) / 𝑇 ) ∈ ℤ ) |
| 174 |
80
|
recnd |
⊢ ( 𝜑 → ( ( 𝐸 ‘ 𝑌 ) − 𝑌 ) ∈ ℂ ) |
| 175 |
174 170 49
|
divcan1d |
⊢ ( 𝜑 → ( ( ( ( 𝐸 ‘ 𝑌 ) − 𝑌 ) / 𝑇 ) · 𝑇 ) = ( ( 𝐸 ‘ 𝑌 ) − 𝑌 ) ) |
| 176 |
175
|
oveq2d |
⊢ ( 𝜑 → ( ( ( 𝑄 ‘ 𝐾 ) − ( ( 𝐸 ‘ 𝑌 ) − 𝑌 ) ) + ( ( ( ( 𝐸 ‘ 𝑌 ) − 𝑌 ) / 𝑇 ) · 𝑇 ) ) = ( ( ( 𝑄 ‘ 𝐾 ) − ( ( 𝐸 ‘ 𝑌 ) − 𝑌 ) ) + ( ( 𝐸 ‘ 𝑌 ) − 𝑌 ) ) ) |
| 177 |
99 174
|
npcand |
⊢ ( 𝜑 → ( ( ( 𝑄 ‘ 𝐾 ) − ( ( 𝐸 ‘ 𝑌 ) − 𝑌 ) ) + ( ( 𝐸 ‘ 𝑌 ) − 𝑌 ) ) = ( 𝑄 ‘ 𝐾 ) ) |
| 178 |
176 177
|
eqtrd |
⊢ ( 𝜑 → ( ( ( 𝑄 ‘ 𝐾 ) − ( ( 𝐸 ‘ 𝑌 ) − 𝑌 ) ) + ( ( ( ( 𝐸 ‘ 𝑌 ) − 𝑌 ) / 𝑇 ) · 𝑇 ) ) = ( 𝑄 ‘ 𝐾 ) ) |
| 179 |
|
ffun |
⊢ ( 𝑄 : ( 0 ... 𝑀 ) ⟶ ℝ → Fun 𝑄 ) |
| 180 |
62 179
|
syl |
⊢ ( 𝜑 → Fun 𝑄 ) |
| 181 |
62
|
fdmd |
⊢ ( 𝜑 → dom 𝑄 = ( 0 ... 𝑀 ) ) |
| 182 |
13 181
|
eleqtrrd |
⊢ ( 𝜑 → 𝐾 ∈ dom 𝑄 ) |
| 183 |
|
fvelrn |
⊢ ( ( Fun 𝑄 ∧ 𝐾 ∈ dom 𝑄 ) → ( 𝑄 ‘ 𝐾 ) ∈ ran 𝑄 ) |
| 184 |
180 182 183
|
syl2anc |
⊢ ( 𝜑 → ( 𝑄 ‘ 𝐾 ) ∈ ran 𝑄 ) |
| 185 |
178 184
|
eqeltrd |
⊢ ( 𝜑 → ( ( ( 𝑄 ‘ 𝐾 ) − ( ( 𝐸 ‘ 𝑌 ) − 𝑌 ) ) + ( ( ( ( 𝐸 ‘ 𝑌 ) − 𝑌 ) / 𝑇 ) · 𝑇 ) ) ∈ ran 𝑄 ) |
| 186 |
|
oveq1 |
⊢ ( 𝑘 = ( ( ( 𝐸 ‘ 𝑌 ) − 𝑌 ) / 𝑇 ) → ( 𝑘 · 𝑇 ) = ( ( ( ( 𝐸 ‘ 𝑌 ) − 𝑌 ) / 𝑇 ) · 𝑇 ) ) |
| 187 |
186
|
oveq2d |
⊢ ( 𝑘 = ( ( ( 𝐸 ‘ 𝑌 ) − 𝑌 ) / 𝑇 ) → ( ( ( 𝑄 ‘ 𝐾 ) − ( ( 𝐸 ‘ 𝑌 ) − 𝑌 ) ) + ( 𝑘 · 𝑇 ) ) = ( ( ( 𝑄 ‘ 𝐾 ) − ( ( 𝐸 ‘ 𝑌 ) − 𝑌 ) ) + ( ( ( ( 𝐸 ‘ 𝑌 ) − 𝑌 ) / 𝑇 ) · 𝑇 ) ) ) |
| 188 |
187
|
eleq1d |
⊢ ( 𝑘 = ( ( ( 𝐸 ‘ 𝑌 ) − 𝑌 ) / 𝑇 ) → ( ( ( ( 𝑄 ‘ 𝐾 ) − ( ( 𝐸 ‘ 𝑌 ) − 𝑌 ) ) + ( 𝑘 · 𝑇 ) ) ∈ ran 𝑄 ↔ ( ( ( 𝑄 ‘ 𝐾 ) − ( ( 𝐸 ‘ 𝑌 ) − 𝑌 ) ) + ( ( ( ( 𝐸 ‘ 𝑌 ) − 𝑌 ) / 𝑇 ) · 𝑇 ) ) ∈ ran 𝑄 ) ) |
| 189 |
188
|
rspcev |
⊢ ( ( ( ( ( 𝐸 ‘ 𝑌 ) − 𝑌 ) / 𝑇 ) ∈ ℤ ∧ ( ( ( 𝑄 ‘ 𝐾 ) − ( ( 𝐸 ‘ 𝑌 ) − 𝑌 ) ) + ( ( ( ( 𝐸 ‘ 𝑌 ) − 𝑌 ) / 𝑇 ) · 𝑇 ) ) ∈ ran 𝑄 ) → ∃ 𝑘 ∈ ℤ ( ( ( 𝑄 ‘ 𝐾 ) − ( ( 𝐸 ‘ 𝑌 ) − 𝑌 ) ) + ( 𝑘 · 𝑇 ) ) ∈ ran 𝑄 ) |
| 190 |
173 185 189
|
syl2anc |
⊢ ( 𝜑 → ∃ 𝑘 ∈ ℤ ( ( ( 𝑄 ‘ 𝐾 ) − ( ( 𝐸 ‘ 𝑌 ) − 𝑌 ) ) + ( 𝑘 · 𝑇 ) ) ∈ ran 𝑄 ) |
| 191 |
190
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑄 ‘ 𝐾 ) < ( 𝐸 ‘ ( 𝑆 ‘ ( 𝐽 + 1 ) ) ) ) → ∃ 𝑘 ∈ ℤ ( ( ( 𝑄 ‘ 𝐾 ) − ( ( 𝐸 ‘ 𝑌 ) − 𝑌 ) ) + ( 𝑘 · 𝑇 ) ) ∈ ran 𝑄 ) |
| 192 |
|
oveq1 |
⊢ ( 𝑥 = ( ( 𝑄 ‘ 𝐾 ) − ( ( 𝐸 ‘ 𝑌 ) − 𝑌 ) ) → ( 𝑥 + ( 𝑘 · 𝑇 ) ) = ( ( ( 𝑄 ‘ 𝐾 ) − ( ( 𝐸 ‘ 𝑌 ) − 𝑌 ) ) + ( 𝑘 · 𝑇 ) ) ) |
| 193 |
192
|
eleq1d |
⊢ ( 𝑥 = ( ( 𝑄 ‘ 𝐾 ) − ( ( 𝐸 ‘ 𝑌 ) − 𝑌 ) ) → ( ( 𝑥 + ( 𝑘 · 𝑇 ) ) ∈ ran 𝑄 ↔ ( ( ( 𝑄 ‘ 𝐾 ) − ( ( 𝐸 ‘ 𝑌 ) − 𝑌 ) ) + ( 𝑘 · 𝑇 ) ) ∈ ran 𝑄 ) ) |
| 194 |
193
|
rexbidv |
⊢ ( 𝑥 = ( ( 𝑄 ‘ 𝐾 ) − ( ( 𝐸 ‘ 𝑌 ) − 𝑌 ) ) → ( ∃ 𝑘 ∈ ℤ ( 𝑥 + ( 𝑘 · 𝑇 ) ) ∈ ran 𝑄 ↔ ∃ 𝑘 ∈ ℤ ( ( ( 𝑄 ‘ 𝐾 ) − ( ( 𝐸 ‘ 𝑌 ) − 𝑌 ) ) + ( 𝑘 · 𝑇 ) ) ∈ ran 𝑄 ) ) |
| 195 |
194
|
elrab |
⊢ ( ( ( 𝑄 ‘ 𝐾 ) − ( ( 𝐸 ‘ 𝑌 ) − 𝑌 ) ) ∈ { 𝑥 ∈ ( 𝐶 [,] 𝐷 ) ∣ ∃ 𝑘 ∈ ℤ ( 𝑥 + ( 𝑘 · 𝑇 ) ) ∈ ran 𝑄 } ↔ ( ( ( 𝑄 ‘ 𝐾 ) − ( ( 𝐸 ‘ 𝑌 ) − 𝑌 ) ) ∈ ( 𝐶 [,] 𝐷 ) ∧ ∃ 𝑘 ∈ ℤ ( ( ( 𝑄 ‘ 𝐾 ) − ( ( 𝐸 ‘ 𝑌 ) − 𝑌 ) ) + ( 𝑘 · 𝑇 ) ) ∈ ran 𝑄 ) ) |
| 196 |
149 191 195
|
sylanbrc |
⊢ ( ( 𝜑 ∧ ( 𝑄 ‘ 𝐾 ) < ( 𝐸 ‘ ( 𝑆 ‘ ( 𝐽 + 1 ) ) ) ) → ( ( 𝑄 ‘ 𝐾 ) − ( ( 𝐸 ‘ 𝑌 ) − 𝑌 ) ) ∈ { 𝑥 ∈ ( 𝐶 [,] 𝐷 ) ∣ ∃ 𝑘 ∈ ℤ ( 𝑥 + ( 𝑘 · 𝑇 ) ) ∈ ran 𝑄 } ) |
| 197 |
|
elun2 |
⊢ ( ( ( 𝑄 ‘ 𝐾 ) − ( ( 𝐸 ‘ 𝑌 ) − 𝑌 ) ) ∈ { 𝑥 ∈ ( 𝐶 [,] 𝐷 ) ∣ ∃ 𝑘 ∈ ℤ ( 𝑥 + ( 𝑘 · 𝑇 ) ) ∈ ran 𝑄 } → ( ( 𝑄 ‘ 𝐾 ) − ( ( 𝐸 ‘ 𝑌 ) − 𝑌 ) ) ∈ ( { 𝐶 , 𝐷 } ∪ { 𝑥 ∈ ( 𝐶 [,] 𝐷 ) ∣ ∃ 𝑘 ∈ ℤ ( 𝑥 + ( 𝑘 · 𝑇 ) ) ∈ ran 𝑄 } ) ) |
| 198 |
196 197
|
syl |
⊢ ( ( 𝜑 ∧ ( 𝑄 ‘ 𝐾 ) < ( 𝐸 ‘ ( 𝑆 ‘ ( 𝐽 + 1 ) ) ) ) → ( ( 𝑄 ‘ 𝐾 ) − ( ( 𝐸 ‘ 𝑌 ) − 𝑌 ) ) ∈ ( { 𝐶 , 𝐷 } ∪ { 𝑥 ∈ ( 𝐶 [,] 𝐷 ) ∣ ∃ 𝑘 ∈ ℤ ( 𝑥 + ( 𝑘 · 𝑇 ) ) ∈ ran 𝑄 } ) ) |
| 199 |
198 17 9
|
3eltr4g |
⊢ ( ( 𝜑 ∧ ( 𝑄 ‘ 𝐾 ) < ( 𝐸 ‘ ( 𝑆 ‘ ( 𝐽 + 1 ) ) ) ) → 𝑋 ∈ 𝐻 ) |
| 200 |
|
elfzelz |
⊢ ( 𝑗 ∈ ( 0 ... 𝑁 ) → 𝑗 ∈ ℤ ) |
| 201 |
200
|
ad2antlr |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ... 𝑁 ) ) ∧ ( ( 𝑆 ‘ 𝐽 ) < ( 𝑆 ‘ 𝑗 ) ∧ ( 𝑆 ‘ 𝑗 ) < ( 𝑆 ‘ ( 𝐽 + 1 ) ) ) ) → 𝑗 ∈ ℤ ) |
| 202 |
|
elfzoelz |
⊢ ( 𝐽 ∈ ( 0 ..^ 𝑁 ) → 𝐽 ∈ ℤ ) |
| 203 |
14 202
|
syl |
⊢ ( 𝜑 → 𝐽 ∈ ℤ ) |
| 204 |
203
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ... 𝑁 ) ) ∧ ( ( 𝑆 ‘ 𝐽 ) < ( 𝑆 ‘ 𝑗 ) ∧ ( 𝑆 ‘ 𝑗 ) < ( 𝑆 ‘ ( 𝐽 + 1 ) ) ) ) → 𝐽 ∈ ℤ ) |
| 205 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ... 𝑁 ) ) ∧ ( 𝑆 ‘ 𝐽 ) < ( 𝑆 ‘ 𝑗 ) ) → ( 𝑆 ‘ 𝐽 ) < ( 𝑆 ‘ 𝑗 ) ) |
| 206 |
26
|
simprd |
⊢ ( 𝜑 → 𝑆 Isom < , < ( ( 0 ... 𝑁 ) , 𝐻 ) ) |
| 207 |
206
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ... 𝑁 ) ) ∧ ( 𝑆 ‘ 𝐽 ) < ( 𝑆 ‘ 𝑗 ) ) → 𝑆 Isom < , < ( ( 0 ... 𝑁 ) , 𝐻 ) ) |
| 208 |
71
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ... 𝑁 ) ) ∧ ( 𝑆 ‘ 𝐽 ) < ( 𝑆 ‘ 𝑗 ) ) → 𝐽 ∈ ( 0 ... 𝑁 ) ) |
| 209 |
|
simplr |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ... 𝑁 ) ) ∧ ( 𝑆 ‘ 𝐽 ) < ( 𝑆 ‘ 𝑗 ) ) → 𝑗 ∈ ( 0 ... 𝑁 ) ) |
| 210 |
|
isorel |
⊢ ( ( 𝑆 Isom < , < ( ( 0 ... 𝑁 ) , 𝐻 ) ∧ ( 𝐽 ∈ ( 0 ... 𝑁 ) ∧ 𝑗 ∈ ( 0 ... 𝑁 ) ) ) → ( 𝐽 < 𝑗 ↔ ( 𝑆 ‘ 𝐽 ) < ( 𝑆 ‘ 𝑗 ) ) ) |
| 211 |
207 208 209 210
|
syl12anc |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ... 𝑁 ) ) ∧ ( 𝑆 ‘ 𝐽 ) < ( 𝑆 ‘ 𝑗 ) ) → ( 𝐽 < 𝑗 ↔ ( 𝑆 ‘ 𝐽 ) < ( 𝑆 ‘ 𝑗 ) ) ) |
| 212 |
205 211
|
mpbird |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ... 𝑁 ) ) ∧ ( 𝑆 ‘ 𝐽 ) < ( 𝑆 ‘ 𝑗 ) ) → 𝐽 < 𝑗 ) |
| 213 |
212
|
adantrr |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ... 𝑁 ) ) ∧ ( ( 𝑆 ‘ 𝐽 ) < ( 𝑆 ‘ 𝑗 ) ∧ ( 𝑆 ‘ 𝑗 ) < ( 𝑆 ‘ ( 𝐽 + 1 ) ) ) ) → 𝐽 < 𝑗 ) |
| 214 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ... 𝑁 ) ) ∧ ( 𝑆 ‘ 𝑗 ) < ( 𝑆 ‘ ( 𝐽 + 1 ) ) ) → ( 𝑆 ‘ 𝑗 ) < ( 𝑆 ‘ ( 𝐽 + 1 ) ) ) |
| 215 |
206
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ... 𝑁 ) ) ∧ ( 𝑆 ‘ 𝑗 ) < ( 𝑆 ‘ ( 𝐽 + 1 ) ) ) → 𝑆 Isom < , < ( ( 0 ... 𝑁 ) , 𝐻 ) ) |
| 216 |
|
simplr |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ... 𝑁 ) ) ∧ ( 𝑆 ‘ 𝑗 ) < ( 𝑆 ‘ ( 𝐽 + 1 ) ) ) → 𝑗 ∈ ( 0 ... 𝑁 ) ) |
| 217 |
37
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ... 𝑁 ) ) ∧ ( 𝑆 ‘ 𝑗 ) < ( 𝑆 ‘ ( 𝐽 + 1 ) ) ) → ( 𝐽 + 1 ) ∈ ( 0 ... 𝑁 ) ) |
| 218 |
|
isorel |
⊢ ( ( 𝑆 Isom < , < ( ( 0 ... 𝑁 ) , 𝐻 ) ∧ ( 𝑗 ∈ ( 0 ... 𝑁 ) ∧ ( 𝐽 + 1 ) ∈ ( 0 ... 𝑁 ) ) ) → ( 𝑗 < ( 𝐽 + 1 ) ↔ ( 𝑆 ‘ 𝑗 ) < ( 𝑆 ‘ ( 𝐽 + 1 ) ) ) ) |
| 219 |
215 216 217 218
|
syl12anc |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ... 𝑁 ) ) ∧ ( 𝑆 ‘ 𝑗 ) < ( 𝑆 ‘ ( 𝐽 + 1 ) ) ) → ( 𝑗 < ( 𝐽 + 1 ) ↔ ( 𝑆 ‘ 𝑗 ) < ( 𝑆 ‘ ( 𝐽 + 1 ) ) ) ) |
| 220 |
214 219
|
mpbird |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ... 𝑁 ) ) ∧ ( 𝑆 ‘ 𝑗 ) < ( 𝑆 ‘ ( 𝐽 + 1 ) ) ) → 𝑗 < ( 𝐽 + 1 ) ) |
| 221 |
220
|
adantrl |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ... 𝑁 ) ) ∧ ( ( 𝑆 ‘ 𝐽 ) < ( 𝑆 ‘ 𝑗 ) ∧ ( 𝑆 ‘ 𝑗 ) < ( 𝑆 ‘ ( 𝐽 + 1 ) ) ) ) → 𝑗 < ( 𝐽 + 1 ) ) |
| 222 |
|
btwnnz |
⊢ ( ( 𝐽 ∈ ℤ ∧ 𝐽 < 𝑗 ∧ 𝑗 < ( 𝐽 + 1 ) ) → ¬ 𝑗 ∈ ℤ ) |
| 223 |
204 213 221 222
|
syl3anc |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ... 𝑁 ) ) ∧ ( ( 𝑆 ‘ 𝐽 ) < ( 𝑆 ‘ 𝑗 ) ∧ ( 𝑆 ‘ 𝑗 ) < ( 𝑆 ‘ ( 𝐽 + 1 ) ) ) ) → ¬ 𝑗 ∈ ℤ ) |
| 224 |
201 223
|
pm2.65da |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ... 𝑁 ) ) → ¬ ( ( 𝑆 ‘ 𝐽 ) < ( 𝑆 ‘ 𝑗 ) ∧ ( 𝑆 ‘ 𝑗 ) < ( 𝑆 ‘ ( 𝐽 + 1 ) ) ) ) |
| 225 |
224
|
adantlr |
⊢ ( ( ( 𝜑 ∧ ( 𝑄 ‘ 𝐾 ) < ( 𝐸 ‘ ( 𝑆 ‘ ( 𝐽 + 1 ) ) ) ) ∧ 𝑗 ∈ ( 0 ... 𝑁 ) ) → ¬ ( ( 𝑆 ‘ 𝐽 ) < ( 𝑆 ‘ 𝑗 ) ∧ ( 𝑆 ‘ 𝑗 ) < ( 𝑆 ‘ ( 𝐽 + 1 ) ) ) ) |
| 226 |
72
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ... 𝑁 ) ) ∧ ( 𝑆 ‘ 𝑗 ) = 𝑋 ) → ( 𝑆 ‘ 𝐽 ) ∈ ℝ ) |
| 227 |
77
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ... 𝑁 ) ) ∧ ( 𝑆 ‘ 𝑗 ) = 𝑋 ) → 𝑌 ∈ ℝ ) |
| 228 |
35
|
ffvelcdmda |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ... 𝑁 ) ) → ( 𝑆 ‘ 𝑗 ) ∈ ℝ ) |
| 229 |
228
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ... 𝑁 ) ) ∧ ( 𝑆 ‘ 𝑗 ) = 𝑋 ) → ( 𝑆 ‘ 𝑗 ) ∈ ℝ ) |
| 230 |
76
|
simp2d |
⊢ ( 𝜑 → ( 𝑆 ‘ 𝐽 ) ≤ 𝑌 ) |
| 231 |
230
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ... 𝑁 ) ) ∧ ( 𝑆 ‘ 𝑗 ) = 𝑋 ) → ( 𝑆 ‘ 𝐽 ) ≤ 𝑌 ) |
| 232 |
107 17
|
breqtrrdi |
⊢ ( 𝜑 → 𝑌 < 𝑋 ) |
| 233 |
232
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑆 ‘ 𝑗 ) = 𝑋 ) → 𝑌 < 𝑋 ) |
| 234 |
|
eqcom |
⊢ ( 𝑋 = ( 𝑆 ‘ 𝑗 ) ↔ ( 𝑆 ‘ 𝑗 ) = 𝑋 ) |
| 235 |
234
|
biimpri |
⊢ ( ( 𝑆 ‘ 𝑗 ) = 𝑋 → 𝑋 = ( 𝑆 ‘ 𝑗 ) ) |
| 236 |
235
|
adantl |
⊢ ( ( 𝜑 ∧ ( 𝑆 ‘ 𝑗 ) = 𝑋 ) → 𝑋 = ( 𝑆 ‘ 𝑗 ) ) |
| 237 |
233 236
|
breqtrd |
⊢ ( ( 𝜑 ∧ ( 𝑆 ‘ 𝑗 ) = 𝑋 ) → 𝑌 < ( 𝑆 ‘ 𝑗 ) ) |
| 238 |
237
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ... 𝑁 ) ) ∧ ( 𝑆 ‘ 𝑗 ) = 𝑋 ) → 𝑌 < ( 𝑆 ‘ 𝑗 ) ) |
| 239 |
226 227 229 231 238
|
lelttrd |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ... 𝑁 ) ) ∧ ( 𝑆 ‘ 𝑗 ) = 𝑋 ) → ( 𝑆 ‘ 𝐽 ) < ( 𝑆 ‘ 𝑗 ) ) |
| 240 |
239
|
adantllr |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑄 ‘ 𝐾 ) < ( 𝐸 ‘ ( 𝑆 ‘ ( 𝐽 + 1 ) ) ) ) ∧ 𝑗 ∈ ( 0 ... 𝑁 ) ) ∧ ( 𝑆 ‘ 𝑗 ) = 𝑋 ) → ( 𝑆 ‘ 𝐽 ) < ( 𝑆 ‘ 𝑗 ) ) |
| 241 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ ( 𝑄 ‘ 𝐾 ) < ( 𝐸 ‘ ( 𝑆 ‘ ( 𝐽 + 1 ) ) ) ) ∧ ( 𝑆 ‘ 𝑗 ) = 𝑋 ) → ( 𝑆 ‘ 𝑗 ) = 𝑋 ) |
| 242 |
17 140
|
eqbrtrid |
⊢ ( ( 𝜑 ∧ ( 𝑄 ‘ 𝐾 ) < ( 𝐸 ‘ ( 𝑆 ‘ ( 𝐽 + 1 ) ) ) ) → 𝑋 < ( 𝑆 ‘ ( 𝐽 + 1 ) ) ) |
| 243 |
242
|
adantr |
⊢ ( ( ( 𝜑 ∧ ( 𝑄 ‘ 𝐾 ) < ( 𝐸 ‘ ( 𝑆 ‘ ( 𝐽 + 1 ) ) ) ) ∧ ( 𝑆 ‘ 𝑗 ) = 𝑋 ) → 𝑋 < ( 𝑆 ‘ ( 𝐽 + 1 ) ) ) |
| 244 |
241 243
|
eqbrtrd |
⊢ ( ( ( 𝜑 ∧ ( 𝑄 ‘ 𝐾 ) < ( 𝐸 ‘ ( 𝑆 ‘ ( 𝐽 + 1 ) ) ) ) ∧ ( 𝑆 ‘ 𝑗 ) = 𝑋 ) → ( 𝑆 ‘ 𝑗 ) < ( 𝑆 ‘ ( 𝐽 + 1 ) ) ) |
| 245 |
244
|
adantlr |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑄 ‘ 𝐾 ) < ( 𝐸 ‘ ( 𝑆 ‘ ( 𝐽 + 1 ) ) ) ) ∧ 𝑗 ∈ ( 0 ... 𝑁 ) ) ∧ ( 𝑆 ‘ 𝑗 ) = 𝑋 ) → ( 𝑆 ‘ 𝑗 ) < ( 𝑆 ‘ ( 𝐽 + 1 ) ) ) |
| 246 |
240 245
|
jca |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑄 ‘ 𝐾 ) < ( 𝐸 ‘ ( 𝑆 ‘ ( 𝐽 + 1 ) ) ) ) ∧ 𝑗 ∈ ( 0 ... 𝑁 ) ) ∧ ( 𝑆 ‘ 𝑗 ) = 𝑋 ) → ( ( 𝑆 ‘ 𝐽 ) < ( 𝑆 ‘ 𝑗 ) ∧ ( 𝑆 ‘ 𝑗 ) < ( 𝑆 ‘ ( 𝐽 + 1 ) ) ) ) |
| 247 |
225 246
|
mtand |
⊢ ( ( ( 𝜑 ∧ ( 𝑄 ‘ 𝐾 ) < ( 𝐸 ‘ ( 𝑆 ‘ ( 𝐽 + 1 ) ) ) ) ∧ 𝑗 ∈ ( 0 ... 𝑁 ) ) → ¬ ( 𝑆 ‘ 𝑗 ) = 𝑋 ) |
| 248 |
247
|
nrexdv |
⊢ ( ( 𝜑 ∧ ( 𝑄 ‘ 𝐾 ) < ( 𝐸 ‘ ( 𝑆 ‘ ( 𝐽 + 1 ) ) ) ) → ¬ ∃ 𝑗 ∈ ( 0 ... 𝑁 ) ( 𝑆 ‘ 𝑗 ) = 𝑋 ) |
| 249 |
|
isof1o |
⊢ ( 𝑆 Isom < , < ( ( 0 ... 𝑁 ) , 𝐻 ) → 𝑆 : ( 0 ... 𝑁 ) –1-1-onto→ 𝐻 ) |
| 250 |
206 249
|
syl |
⊢ ( 𝜑 → 𝑆 : ( 0 ... 𝑁 ) –1-1-onto→ 𝐻 ) |
| 251 |
|
f1ofo |
⊢ ( 𝑆 : ( 0 ... 𝑁 ) –1-1-onto→ 𝐻 → 𝑆 : ( 0 ... 𝑁 ) –onto→ 𝐻 ) |
| 252 |
250 251
|
syl |
⊢ ( 𝜑 → 𝑆 : ( 0 ... 𝑁 ) –onto→ 𝐻 ) |
| 253 |
|
foelrn |
⊢ ( ( 𝑆 : ( 0 ... 𝑁 ) –onto→ 𝐻 ∧ 𝑋 ∈ 𝐻 ) → ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑋 = ( 𝑆 ‘ 𝑗 ) ) |
| 254 |
252 253
|
sylan |
⊢ ( ( 𝜑 ∧ 𝑋 ∈ 𝐻 ) → ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑋 = ( 𝑆 ‘ 𝑗 ) ) |
| 255 |
234
|
rexbii |
⊢ ( ∃ 𝑗 ∈ ( 0 ... 𝑁 ) 𝑋 = ( 𝑆 ‘ 𝑗 ) ↔ ∃ 𝑗 ∈ ( 0 ... 𝑁 ) ( 𝑆 ‘ 𝑗 ) = 𝑋 ) |
| 256 |
254 255
|
sylib |
⊢ ( ( 𝜑 ∧ 𝑋 ∈ 𝐻 ) → ∃ 𝑗 ∈ ( 0 ... 𝑁 ) ( 𝑆 ‘ 𝑗 ) = 𝑋 ) |
| 257 |
256
|
adantlr |
⊢ ( ( ( 𝜑 ∧ ( 𝑄 ‘ 𝐾 ) < ( 𝐸 ‘ ( 𝑆 ‘ ( 𝐽 + 1 ) ) ) ) ∧ 𝑋 ∈ 𝐻 ) → ∃ 𝑗 ∈ ( 0 ... 𝑁 ) ( 𝑆 ‘ 𝑗 ) = 𝑋 ) |
| 258 |
248 257
|
mtand |
⊢ ( ( 𝜑 ∧ ( 𝑄 ‘ 𝐾 ) < ( 𝐸 ‘ ( 𝑆 ‘ ( 𝐽 + 1 ) ) ) ) → ¬ 𝑋 ∈ 𝐻 ) |
| 259 |
199 258
|
pm2.65da |
⊢ ( 𝜑 → ¬ ( 𝑄 ‘ 𝐾 ) < ( 𝐸 ‘ ( 𝑆 ‘ ( 𝐽 + 1 ) ) ) ) |
| 260 |
56 63 259
|
nltled |
⊢ ( 𝜑 → ( 𝐸 ‘ ( 𝑆 ‘ ( 𝐽 + 1 ) ) ) ≤ ( 𝑄 ‘ 𝐾 ) ) |