Metamath Proof Explorer


Theorem fourierdlem63

Description: The upper bound of intervals in the moved partition are mapped to points that are not greater than the corresponding upper bounds in the original partition. (Contributed by Glauco Siliprandi, 11-Dec-2019)

Ref Expression
Hypotheses fourierdlem63.t T=BA
fourierdlem63.p P=mp0m|p0=Apm=Bi0..^mpi<pi+1
fourierdlem63.m φM
fourierdlem63.q φQPM
fourierdlem63.c φC
fourierdlem63.d φD
fourierdlem63.cltd φC<D
fourierdlem63.o O=mp0m|p0=Cpm=Di0..^mpi<pi+1
fourierdlem63.h H=CDxCD|kx+kTranQ
fourierdlem63.n N=H1
fourierdlem63.s S=ιf|fIsom<,<0NH
fourierdlem63.e E=xx+BxTT
fourierdlem63.k φK0M
fourierdlem63.j φJ0..^N
fourierdlem63.y φYSJSJ+1
fourierdlem63.eyltqk φEY<QK
fourierdlem63.x X=QKEYY
Assertion fourierdlem63 φESJ+1QK

Proof

Step Hyp Ref Expression
1 fourierdlem63.t T=BA
2 fourierdlem63.p P=mp0m|p0=Apm=Bi0..^mpi<pi+1
3 fourierdlem63.m φM
4 fourierdlem63.q φQPM
5 fourierdlem63.c φC
6 fourierdlem63.d φD
7 fourierdlem63.cltd φC<D
8 fourierdlem63.o O=mp0m|p0=Cpm=Di0..^mpi<pi+1
9 fourierdlem63.h H=CDxCD|kx+kTranQ
10 fourierdlem63.n N=H1
11 fourierdlem63.s S=ιf|fIsom<,<0NH
12 fourierdlem63.e E=xx+BxTT
13 fourierdlem63.k φK0M
14 fourierdlem63.j φJ0..^N
15 fourierdlem63.y φYSJSJ+1
16 fourierdlem63.eyltqk φEY<QK
17 fourierdlem63.x X=QKEYY
18 12 a1i φE=xx+BxTT
19 id x=SJ+1x=SJ+1
20 oveq2 x=SJ+1Bx=BSJ+1
21 20 oveq1d x=SJ+1BxT=BSJ+1T
22 21 fveq2d x=SJ+1BxT=BSJ+1T
23 22 oveq1d x=SJ+1BxTT=BSJ+1TT
24 19 23 oveq12d x=SJ+1x+BxTT=SJ+1+BSJ+1TT
25 24 adantl φx=SJ+1x+BxTT=SJ+1+BSJ+1TT
26 1 2 3 4 5 6 7 8 9 10 11 fourierdlem54 φNSONSIsom<,<0NH
27 26 simpld φNSON
28 27 simprd φSON
29 27 simpld φN
30 8 fourierdlem2 NSONS0NS0=CSN=Di0..^NSi<Si+1
31 29 30 syl φSONS0NS0=CSN=Di0..^NSi<Si+1
32 28 31 mpbid φS0NS0=CSN=Di0..^NSi<Si+1
33 32 simpld φS0N
34 elmapi S0NS:0N
35 33 34 syl φS:0N
36 fzofzp1 J0..^NJ+10N
37 14 36 syl φJ+10N
38 35 37 ffvelcdmd φSJ+1
39 2 3 4 fourierdlem11 φABA<B
40 39 simp2d φB
41 40 38 resubcld φBSJ+1
42 39 simp1d φA
43 40 42 resubcld φBA
44 1 43 eqeltrid φT
45 39 simp3d φA<B
46 42 40 posdifd φA<B0<BA
47 45 46 mpbid φ0<BA
48 47 1 breqtrrdi φ0<T
49 48 gt0ne0d φT0
50 41 44 49 redivcld φBSJ+1T
51 50 flcld φBSJ+1T
52 51 zred φBSJ+1T
53 52 44 remulcld φBSJ+1TT
54 38 53 readdcld φSJ+1+BSJ+1TT
55 18 25 38 54 fvmptd φESJ+1=SJ+1+BSJ+1TT
56 55 54 eqeltrd φESJ+1
57 2 fourierdlem2 MQPMQ0MQ0=AQM=Bi0..^MQi<Qi+1
58 3 57 syl φQPMQ0MQ0=AQM=Bi0..^MQi<Qi+1
59 4 58 mpbid φQ0MQ0=AQM=Bi0..^MQi<Qi+1
60 59 simpld φQ0M
61 elmapi Q0MQ:0M
62 60 61 syl φQ:0M
63 62 13 ffvelcdmd φQK
64 5 adantr φQK<ESJ+1C
65 6 adantr φQK<ESJ+1D
66 42 rexrd φA*
67 iocssre A*BAB
68 66 40 67 syl2anc φAB
69 42 40 45 1 12 fourierdlem4 φE:AB
70 elfzofz J0..^NJ0N
71 14 70 syl φJ0N
72 35 71 ffvelcdmd φSJ
73 38 rexrd φSJ+1*
74 elico2 SJSJ+1*YSJSJ+1YSJYY<SJ+1
75 72 73 74 syl2anc φYSJSJ+1YSJYY<SJ+1
76 15 75 mpbid φYSJYY<SJ+1
77 76 simp1d φY
78 69 77 ffvelcdmd φEYAB
79 68 78 sseldd φEY
80 79 77 resubcld φEYY
81 63 80 resubcld φQKEYY
82 81 adantr φQK<ESJ+1QKEYY
83 icossicc SJSJ+1SJSJ+1
84 5 rexrd φC*
85 6 rexrd φD*
86 8 29 28 fourierdlem15 φS:0NCD
87 84 85 86 14 fourierdlem8 φSJSJ+1CD
88 83 87 sstrid φSJSJ+1CD
89 88 15 sseldd φYCD
90 elicc2 CDYCDYCYYD
91 5 6 90 syl2anc φYCDYCYYD
92 89 91 mpbid φYCYYD
93 92 simp2d φCY
94 63 79 resubcld φQKEY
95 79 63 posdifd φEY<QK0<QKEY
96 16 95 mpbid φ0<QKEY
97 94 96 elrpd φQKEY+
98 77 97 ltaddrpd φY<Y+QK-EY
99 63 recnd φQK
100 79 recnd φEY
101 77 recnd φY
102 99 100 101 subsub3d φQKEYY=QK+Y-EY
103 99 101 addcomd φQK+Y=Y+QK
104 103 oveq1d φQK+Y-EY=Y+QK-EY
105 101 99 100 addsubassd φY+QK-EY=Y+QK-EY
106 102 104 105 3eqtrrd φY+QK-EY=QKEYY
107 98 106 breqtrd φY<QKEYY
108 5 77 81 93 107 lelttrd φC<QKEYY
109 5 81 108 ltled φCQKEYY
110 109 adantr φQK<ESJ+1CQKEYY
111 38 adantr φQK<ESJ+1SJ+1
112 63 adantr φQK<ESJ+1QK
113 56 38 resubcld φESJ+1SJ+1
114 113 adantr φQK<ESJ+1ESJ+1SJ+1
115 112 114 resubcld φQK<ESJ+1QKESJ+1SJ+1
116 76 simp3d φY<SJ+1
117 77 38 116 ltled φYSJ+1
118 42 40 45 1 12 77 38 117 fourierdlem7 φESJ+1SJ+1EYY
119 113 80 63 118 lesub2dd φQKEYYQKESJ+1SJ+1
120 119 adantr φQK<ESJ+1QKEYYQKESJ+1SJ+1
121 99 adantr φQK<ESJ+1QK
122 56 recnd φESJ+1
123 122 adantr φQK<ESJ+1ESJ+1
124 111 recnd φQK<ESJ+1SJ+1
125 121 123 124 subsubd φQK<ESJ+1QKESJ+1SJ+1=QK-ESJ+1+SJ+1
126 99 122 subcld φQKESJ+1
127 38 recnd φSJ+1
128 126 127 addcomd φQK-ESJ+1+SJ+1=SJ+1+QK-ESJ+1
129 128 adantr φQK<ESJ+1QK-ESJ+1+SJ+1=SJ+1+QK-ESJ+1
130 125 129 eqtrd φQK<ESJ+1QKESJ+1SJ+1=SJ+1+QK-ESJ+1
131 simpr φQK<ESJ+1QK<ESJ+1
132 56 adantr φQK<ESJ+1ESJ+1
133 112 132 sublt0d φQK<ESJ+1QKESJ+1<0QK<ESJ+1
134 131 133 mpbird φQK<ESJ+1QKESJ+1<0
135 112 132 resubcld φQK<ESJ+1QKESJ+1
136 ltaddneg QKESJ+1SJ+1QKESJ+1<0SJ+1+QK-ESJ+1<SJ+1
137 135 111 136 syl2anc φQK<ESJ+1QKESJ+1<0SJ+1+QK-ESJ+1<SJ+1
138 134 137 mpbid φQK<ESJ+1SJ+1+QK-ESJ+1<SJ+1
139 130 138 eqbrtrd φQK<ESJ+1QKESJ+1SJ+1<SJ+1
140 82 115 111 120 139 lelttrd φQK<ESJ+1QKEYY<SJ+1
141 86 37 ffvelcdmd φSJ+1CD
142 elicc2 CDSJ+1CDSJ+1CSJ+1SJ+1D
143 5 6 142 syl2anc φSJ+1CDSJ+1CSJ+1SJ+1D
144 141 143 mpbid φSJ+1CSJ+1SJ+1D
145 144 simp3d φSJ+1D
146 145 adantr φQK<ESJ+1SJ+1D
147 82 111 65 140 146 ltletrd φQK<ESJ+1QKEYY<D
148 82 65 147 ltled φQK<ESJ+1QKEYYD
149 64 65 82 110 148 eliccd φQK<ESJ+1QKEYYCD
150 id x=Yx=Y
151 oveq2 x=YBx=BY
152 151 oveq1d x=YBxT=BYT
153 152 fveq2d x=YBxT=BYT
154 153 oveq1d x=YBxTT=BYTT
155 150 154 oveq12d x=Yx+BxTT=Y+BYTT
156 155 adantl φx=Yx+BxTT=Y+BYTT
157 40 77 resubcld φBY
158 157 44 49 redivcld φBYT
159 158 flcld φBYT
160 159 zred φBYT
161 160 44 remulcld φBYTT
162 77 161 readdcld φY+BYTT
163 18 156 77 162 fvmptd φEY=Y+BYTT
164 163 oveq1d φEYY=Y+BYTT-Y
165 164 oveq1d φEYYT=Y+BYTT-YT
166 161 recnd φBYTT
167 101 166 pncan2d φY+BYTT-Y=BYTT
168 167 oveq1d φY+BYTT-YT=BYTTT
169 160 recnd φBYT
170 44 recnd φT
171 169 170 49 divcan4d φBYTTT=BYT
172 165 168 171 3eqtrd φEYYT=BYT
173 172 159 eqeltrd φEYYT
174 80 recnd φEYY
175 174 170 49 divcan1d φEYYTT=EYY
176 175 oveq2d φQK-EYY+EYYTT=QKEYY+EY-Y
177 99 174 npcand φQKEYY+EY-Y=QK
178 176 177 eqtrd φQK-EYY+EYYTT=QK
179 ffun Q:0MFunQ
180 62 179 syl φFunQ
181 62 fdmd φdomQ=0M
182 13 181 eleqtrrd φKdomQ
183 fvelrn FunQKdomQQKranQ
184 180 182 183 syl2anc φQKranQ
185 178 184 eqeltrd φQK-EYY+EYYTTranQ
186 oveq1 k=EYYTkT=EYYTT
187 186 oveq2d k=EYYTQK-EYY+kT=QK-EYY+EYYTT
188 187 eleq1d k=EYYTQK-EYY+kTranQQK-EYY+EYYTTranQ
189 188 rspcev EYYTQK-EYY+EYYTTranQkQK-EYY+kTranQ
190 173 185 189 syl2anc φkQK-EYY+kTranQ
191 190 adantr φQK<ESJ+1kQK-EYY+kTranQ
192 oveq1 x=QKEYYx+kT=QK-EYY+kT
193 192 eleq1d x=QKEYYx+kTranQQK-EYY+kTranQ
194 193 rexbidv x=QKEYYkx+kTranQkQK-EYY+kTranQ
195 194 elrab QKEYYxCD|kx+kTranQQKEYYCDkQK-EYY+kTranQ
196 149 191 195 sylanbrc φQK<ESJ+1QKEYYxCD|kx+kTranQ
197 elun2 QKEYYxCD|kx+kTranQQKEYYCDxCD|kx+kTranQ
198 196 197 syl φQK<ESJ+1QKEYYCDxCD|kx+kTranQ
199 198 17 9 3eltr4g φQK<ESJ+1XH
200 elfzelz j0Nj
201 200 ad2antlr φj0NSJ<SjSj<SJ+1j
202 elfzoelz J0..^NJ
203 14 202 syl φJ
204 203 ad2antrr φj0NSJ<SjSj<SJ+1J
205 simpr φj0NSJ<SjSJ<Sj
206 26 simprd φSIsom<,<0NH
207 206 ad2antrr φj0NSJ<SjSIsom<,<0NH
208 71 ad2antrr φj0NSJ<SjJ0N
209 simplr φj0NSJ<Sjj0N
210 isorel SIsom<,<0NHJ0Nj0NJ<jSJ<Sj
211 207 208 209 210 syl12anc φj0NSJ<SjJ<jSJ<Sj
212 205 211 mpbird φj0NSJ<SjJ<j
213 212 adantrr φj0NSJ<SjSj<SJ+1J<j
214 simpr φj0NSj<SJ+1Sj<SJ+1
215 206 ad2antrr φj0NSj<SJ+1SIsom<,<0NH
216 simplr φj0NSj<SJ+1j0N
217 37 ad2antrr φj0NSj<SJ+1J+10N
218 isorel SIsom<,<0NHj0NJ+10Nj<J+1Sj<SJ+1
219 215 216 217 218 syl12anc φj0NSj<SJ+1j<J+1Sj<SJ+1
220 214 219 mpbird φj0NSj<SJ+1j<J+1
221 220 adantrl φj0NSJ<SjSj<SJ+1j<J+1
222 btwnnz JJ<jj<J+1¬j
223 204 213 221 222 syl3anc φj0NSJ<SjSj<SJ+1¬j
224 201 223 pm2.65da φj0N¬SJ<SjSj<SJ+1
225 224 adantlr φQK<ESJ+1j0N¬SJ<SjSj<SJ+1
226 72 ad2antrr φj0NSj=XSJ
227 77 ad2antrr φj0NSj=XY
228 35 ffvelcdmda φj0NSj
229 228 adantr φj0NSj=XSj
230 76 simp2d φSJY
231 230 ad2antrr φj0NSj=XSJY
232 107 17 breqtrrdi φY<X
233 232 adantr φSj=XY<X
234 eqcom X=SjSj=X
235 234 biimpri Sj=XX=Sj
236 235 adantl φSj=XX=Sj
237 233 236 breqtrd φSj=XY<Sj
238 237 adantlr φj0NSj=XY<Sj
239 226 227 229 231 238 lelttrd φj0NSj=XSJ<Sj
240 239 adantllr φQK<ESJ+1j0NSj=XSJ<Sj
241 simpr φQK<ESJ+1Sj=XSj=X
242 17 140 eqbrtrid φQK<ESJ+1X<SJ+1
243 242 adantr φQK<ESJ+1Sj=XX<SJ+1
244 241 243 eqbrtrd φQK<ESJ+1Sj=XSj<SJ+1
245 244 adantlr φQK<ESJ+1j0NSj=XSj<SJ+1
246 240 245 jca φQK<ESJ+1j0NSj=XSJ<SjSj<SJ+1
247 225 246 mtand φQK<ESJ+1j0N¬Sj=X
248 247 nrexdv φQK<ESJ+1¬j0NSj=X
249 isof1o SIsom<,<0NHS:0N1-1 ontoH
250 206 249 syl φS:0N1-1 ontoH
251 f1ofo S:0N1-1 ontoHS:0NontoH
252 250 251 syl φS:0NontoH
253 foelrn S:0NontoHXHj0NX=Sj
254 252 253 sylan φXHj0NX=Sj
255 234 rexbii j0NX=Sjj0NSj=X
256 254 255 sylib φXHj0NSj=X
257 256 adantlr φQK<ESJ+1XHj0NSj=X
258 248 257 mtand φQK<ESJ+1¬XH
259 199 258 pm2.65da φ¬QK<ESJ+1
260 56 63 259 nltled φESJ+1QK