| Step |
Hyp |
Ref |
Expression |
| 1 |
|
fmfnfm.b |
|- ( ph -> B e. ( fBas ` Y ) ) |
| 2 |
|
fmfnfm.l |
|- ( ph -> L e. ( Fil ` X ) ) |
| 3 |
|
fmfnfm.f |
|- ( ph -> F : Y --> X ) |
| 4 |
|
fmfnfm.fm |
|- ( ph -> ( ( X FilMap F ) ` B ) C_ L ) |
| 5 |
|
filelss |
|- ( ( L e. ( Fil ` X ) /\ t e. L ) -> t C_ X ) |
| 6 |
5
|
ex |
|- ( L e. ( Fil ` X ) -> ( t e. L -> t C_ X ) ) |
| 7 |
2 6
|
syl |
|- ( ph -> ( t e. L -> t C_ X ) ) |
| 8 |
|
mptexg |
|- ( L e. ( Fil ` X ) -> ( x e. L |-> ( `' F " x ) ) e. _V ) |
| 9 |
|
rnexg |
|- ( ( x e. L |-> ( `' F " x ) ) e. _V -> ran ( x e. L |-> ( `' F " x ) ) e. _V ) |
| 10 |
8 9
|
syl |
|- ( L e. ( Fil ` X ) -> ran ( x e. L |-> ( `' F " x ) ) e. _V ) |
| 11 |
2 10
|
syl |
|- ( ph -> ran ( x e. L |-> ( `' F " x ) ) e. _V ) |
| 12 |
|
unexg |
|- ( ( B e. ( fBas ` Y ) /\ ran ( x e. L |-> ( `' F " x ) ) e. _V ) -> ( B u. ran ( x e. L |-> ( `' F " x ) ) ) e. _V ) |
| 13 |
1 11 12
|
syl2anc |
|- ( ph -> ( B u. ran ( x e. L |-> ( `' F " x ) ) ) e. _V ) |
| 14 |
|
ssfii |
|- ( ( B u. ran ( x e. L |-> ( `' F " x ) ) ) e. _V -> ( B u. ran ( x e. L |-> ( `' F " x ) ) ) C_ ( fi ` ( B u. ran ( x e. L |-> ( `' F " x ) ) ) ) ) |
| 15 |
14
|
unssbd |
|- ( ( B u. ran ( x e. L |-> ( `' F " x ) ) ) e. _V -> ran ( x e. L |-> ( `' F " x ) ) C_ ( fi ` ( B u. ran ( x e. L |-> ( `' F " x ) ) ) ) ) |
| 16 |
13 15
|
syl |
|- ( ph -> ran ( x e. L |-> ( `' F " x ) ) C_ ( fi ` ( B u. ran ( x e. L |-> ( `' F " x ) ) ) ) ) |
| 17 |
16
|
adantr |
|- ( ( ph /\ t e. L ) -> ran ( x e. L |-> ( `' F " x ) ) C_ ( fi ` ( B u. ran ( x e. L |-> ( `' F " x ) ) ) ) ) |
| 18 |
|
eqid |
|- ( `' F " t ) = ( `' F " t ) |
| 19 |
|
imaeq2 |
|- ( x = t -> ( `' F " x ) = ( `' F " t ) ) |
| 20 |
19
|
rspceeqv |
|- ( ( t e. L /\ ( `' F " t ) = ( `' F " t ) ) -> E. x e. L ( `' F " t ) = ( `' F " x ) ) |
| 21 |
18 20
|
mpan2 |
|- ( t e. L -> E. x e. L ( `' F " t ) = ( `' F " x ) ) |
| 22 |
21
|
adantl |
|- ( ( ph /\ t e. L ) -> E. x e. L ( `' F " t ) = ( `' F " x ) ) |
| 23 |
|
elfvdm |
|- ( B e. ( fBas ` Y ) -> Y e. dom fBas ) |
| 24 |
1 23
|
syl |
|- ( ph -> Y e. dom fBas ) |
| 25 |
|
cnvimass |
|- ( `' F " t ) C_ dom F |
| 26 |
25 3
|
fssdm |
|- ( ph -> ( `' F " t ) C_ Y ) |
| 27 |
24 26
|
ssexd |
|- ( ph -> ( `' F " t ) e. _V ) |
| 28 |
27
|
adantr |
|- ( ( ph /\ t e. L ) -> ( `' F " t ) e. _V ) |
| 29 |
|
eqid |
|- ( x e. L |-> ( `' F " x ) ) = ( x e. L |-> ( `' F " x ) ) |
| 30 |
29
|
elrnmpt |
|- ( ( `' F " t ) e. _V -> ( ( `' F " t ) e. ran ( x e. L |-> ( `' F " x ) ) <-> E. x e. L ( `' F " t ) = ( `' F " x ) ) ) |
| 31 |
28 30
|
syl |
|- ( ( ph /\ t e. L ) -> ( ( `' F " t ) e. ran ( x e. L |-> ( `' F " x ) ) <-> E. x e. L ( `' F " t ) = ( `' F " x ) ) ) |
| 32 |
22 31
|
mpbird |
|- ( ( ph /\ t e. L ) -> ( `' F " t ) e. ran ( x e. L |-> ( `' F " x ) ) ) |
| 33 |
17 32
|
sseldd |
|- ( ( ph /\ t e. L ) -> ( `' F " t ) e. ( fi ` ( B u. ran ( x e. L |-> ( `' F " x ) ) ) ) ) |
| 34 |
|
ffun |
|- ( F : Y --> X -> Fun F ) |
| 35 |
|
ssid |
|- ( `' F " t ) C_ ( `' F " t ) |
| 36 |
|
funimass2 |
|- ( ( Fun F /\ ( `' F " t ) C_ ( `' F " t ) ) -> ( F " ( `' F " t ) ) C_ t ) |
| 37 |
34 35 36
|
sylancl |
|- ( F : Y --> X -> ( F " ( `' F " t ) ) C_ t ) |
| 38 |
3 37
|
syl |
|- ( ph -> ( F " ( `' F " t ) ) C_ t ) |
| 39 |
38
|
adantr |
|- ( ( ph /\ t e. L ) -> ( F " ( `' F " t ) ) C_ t ) |
| 40 |
|
imaeq2 |
|- ( s = ( `' F " t ) -> ( F " s ) = ( F " ( `' F " t ) ) ) |
| 41 |
40
|
sseq1d |
|- ( s = ( `' F " t ) -> ( ( F " s ) C_ t <-> ( F " ( `' F " t ) ) C_ t ) ) |
| 42 |
41
|
rspcev |
|- ( ( ( `' F " t ) e. ( fi ` ( B u. ran ( x e. L |-> ( `' F " x ) ) ) ) /\ ( F " ( `' F " t ) ) C_ t ) -> E. s e. ( fi ` ( B u. ran ( x e. L |-> ( `' F " x ) ) ) ) ( F " s ) C_ t ) |
| 43 |
33 39 42
|
syl2anc |
|- ( ( ph /\ t e. L ) -> E. s e. ( fi ` ( B u. ran ( x e. L |-> ( `' F " x ) ) ) ) ( F " s ) C_ t ) |
| 44 |
43
|
ex |
|- ( ph -> ( t e. L -> E. s e. ( fi ` ( B u. ran ( x e. L |-> ( `' F " x ) ) ) ) ( F " s ) C_ t ) ) |
| 45 |
7 44
|
jcad |
|- ( ph -> ( t e. L -> ( t C_ X /\ E. s e. ( fi ` ( B u. ran ( x e. L |-> ( `' F " x ) ) ) ) ( F " s ) C_ t ) ) ) |
| 46 |
|
elfiun |
|- ( ( B e. ( fBas ` Y ) /\ ran ( x e. L |-> ( `' F " x ) ) e. _V ) -> ( s e. ( fi ` ( B u. ran ( x e. L |-> ( `' F " x ) ) ) ) <-> ( s e. ( fi ` B ) \/ s e. ( fi ` ran ( x e. L |-> ( `' F " x ) ) ) \/ E. z e. ( fi ` B ) E. w e. ( fi ` ran ( x e. L |-> ( `' F " x ) ) ) s = ( z i^i w ) ) ) ) |
| 47 |
1 11 46
|
syl2anc |
|- ( ph -> ( s e. ( fi ` ( B u. ran ( x e. L |-> ( `' F " x ) ) ) ) <-> ( s e. ( fi ` B ) \/ s e. ( fi ` ran ( x e. L |-> ( `' F " x ) ) ) \/ E. z e. ( fi ` B ) E. w e. ( fi ` ran ( x e. L |-> ( `' F " x ) ) ) s = ( z i^i w ) ) ) ) |
| 48 |
1 2 3 4
|
fmfnfmlem1 |
|- ( ph -> ( s e. ( fi ` B ) -> ( ( F " s ) C_ t -> ( t C_ X -> t e. L ) ) ) ) |
| 49 |
1 2 3 4
|
fmfnfmlem3 |
|- ( ph -> ( fi ` ran ( x e. L |-> ( `' F " x ) ) ) = ran ( x e. L |-> ( `' F " x ) ) ) |
| 50 |
49
|
eleq2d |
|- ( ph -> ( s e. ( fi ` ran ( x e. L |-> ( `' F " x ) ) ) <-> s e. ran ( x e. L |-> ( `' F " x ) ) ) ) |
| 51 |
29
|
elrnmpt |
|- ( s e. _V -> ( s e. ran ( x e. L |-> ( `' F " x ) ) <-> E. x e. L s = ( `' F " x ) ) ) |
| 52 |
51
|
elv |
|- ( s e. ran ( x e. L |-> ( `' F " x ) ) <-> E. x e. L s = ( `' F " x ) ) |
| 53 |
1 2 3 4
|
fmfnfmlem2 |
|- ( ph -> ( E. x e. L s = ( `' F " x ) -> ( ( F " s ) C_ t -> ( t C_ X -> t e. L ) ) ) ) |
| 54 |
52 53
|
biimtrid |
|- ( ph -> ( s e. ran ( x e. L |-> ( `' F " x ) ) -> ( ( F " s ) C_ t -> ( t C_ X -> t e. L ) ) ) ) |
| 55 |
50 54
|
sylbid |
|- ( ph -> ( s e. ( fi ` ran ( x e. L |-> ( `' F " x ) ) ) -> ( ( F " s ) C_ t -> ( t C_ X -> t e. L ) ) ) ) |
| 56 |
49
|
eleq2d |
|- ( ph -> ( w e. ( fi ` ran ( x e. L |-> ( `' F " x ) ) ) <-> w e. ran ( x e. L |-> ( `' F " x ) ) ) ) |
| 57 |
29
|
elrnmpt |
|- ( w e. _V -> ( w e. ran ( x e. L |-> ( `' F " x ) ) <-> E. x e. L w = ( `' F " x ) ) ) |
| 58 |
57
|
elv |
|- ( w e. ran ( x e. L |-> ( `' F " x ) ) <-> E. x e. L w = ( `' F " x ) ) |
| 59 |
56 58
|
bitrdi |
|- ( ph -> ( w e. ( fi ` ran ( x e. L |-> ( `' F " x ) ) ) <-> E. x e. L w = ( `' F " x ) ) ) |
| 60 |
59
|
adantr |
|- ( ( ph /\ z e. ( fi ` B ) ) -> ( w e. ( fi ` ran ( x e. L |-> ( `' F " x ) ) ) <-> E. x e. L w = ( `' F " x ) ) ) |
| 61 |
|
fbssfi |
|- ( ( B e. ( fBas ` Y ) /\ z e. ( fi ` B ) ) -> E. s e. B s C_ z ) |
| 62 |
1 61
|
sylan |
|- ( ( ph /\ z e. ( fi ` B ) ) -> E. s e. B s C_ z ) |
| 63 |
2
|
ad3antrrr |
|- ( ( ( ( ph /\ ( s e. B /\ s C_ z ) ) /\ x e. L ) /\ ( ( F " ( z i^i ( `' F " x ) ) ) C_ t /\ t C_ X ) ) -> L e. ( Fil ` X ) ) |
| 64 |
2
|
adantr |
|- ( ( ph /\ ( s e. B /\ s C_ z ) ) -> L e. ( Fil ` X ) ) |
| 65 |
4
|
adantr |
|- ( ( ph /\ s e. B ) -> ( ( X FilMap F ) ` B ) C_ L ) |
| 66 |
|
filtop |
|- ( L e. ( Fil ` X ) -> X e. L ) |
| 67 |
2 66
|
syl |
|- ( ph -> X e. L ) |
| 68 |
67 1 3
|
3jca |
|- ( ph -> ( X e. L /\ B e. ( fBas ` Y ) /\ F : Y --> X ) ) |
| 69 |
68
|
adantr |
|- ( ( ph /\ s e. B ) -> ( X e. L /\ B e. ( fBas ` Y ) /\ F : Y --> X ) ) |
| 70 |
|
ssfg |
|- ( B e. ( fBas ` Y ) -> B C_ ( Y filGen B ) ) |
| 71 |
1 70
|
syl |
|- ( ph -> B C_ ( Y filGen B ) ) |
| 72 |
71
|
sselda |
|- ( ( ph /\ s e. B ) -> s e. ( Y filGen B ) ) |
| 73 |
|
eqid |
|- ( Y filGen B ) = ( Y filGen B ) |
| 74 |
73
|
imaelfm |
|- ( ( ( X e. L /\ B e. ( fBas ` Y ) /\ F : Y --> X ) /\ s e. ( Y filGen B ) ) -> ( F " s ) e. ( ( X FilMap F ) ` B ) ) |
| 75 |
69 72 74
|
syl2anc |
|- ( ( ph /\ s e. B ) -> ( F " s ) e. ( ( X FilMap F ) ` B ) ) |
| 76 |
65 75
|
sseldd |
|- ( ( ph /\ s e. B ) -> ( F " s ) e. L ) |
| 77 |
76
|
adantrr |
|- ( ( ph /\ ( s e. B /\ s C_ z ) ) -> ( F " s ) e. L ) |
| 78 |
64 77
|
jca |
|- ( ( ph /\ ( s e. B /\ s C_ z ) ) -> ( L e. ( Fil ` X ) /\ ( F " s ) e. L ) ) |
| 79 |
|
filin |
|- ( ( L e. ( Fil ` X ) /\ ( F " s ) e. L /\ x e. L ) -> ( ( F " s ) i^i x ) e. L ) |
| 80 |
79
|
3expa |
|- ( ( ( L e. ( Fil ` X ) /\ ( F " s ) e. L ) /\ x e. L ) -> ( ( F " s ) i^i x ) e. L ) |
| 81 |
78 80
|
sylan |
|- ( ( ( ph /\ ( s e. B /\ s C_ z ) ) /\ x e. L ) -> ( ( F " s ) i^i x ) e. L ) |
| 82 |
81
|
adantr |
|- ( ( ( ( ph /\ ( s e. B /\ s C_ z ) ) /\ x e. L ) /\ ( ( F " ( z i^i ( `' F " x ) ) ) C_ t /\ t C_ X ) ) -> ( ( F " s ) i^i x ) e. L ) |
| 83 |
|
simprr |
|- ( ( ( ( ph /\ ( s e. B /\ s C_ z ) ) /\ x e. L ) /\ ( ( F " ( z i^i ( `' F " x ) ) ) C_ t /\ t C_ X ) ) -> t C_ X ) |
| 84 |
|
elin |
|- ( w e. ( ( F " s ) i^i x ) <-> ( w e. ( F " s ) /\ w e. x ) ) |
| 85 |
3 34
|
syl |
|- ( ph -> Fun F ) |
| 86 |
|
fvelima |
|- ( ( Fun F /\ w e. ( F " s ) ) -> E. y e. s ( F ` y ) = w ) |
| 87 |
86
|
ex |
|- ( Fun F -> ( w e. ( F " s ) -> E. y e. s ( F ` y ) = w ) ) |
| 88 |
85 87
|
syl |
|- ( ph -> ( w e. ( F " s ) -> E. y e. s ( F ` y ) = w ) ) |
| 89 |
88
|
ad3antrrr |
|- ( ( ( ( ph /\ ( s e. B /\ s C_ z ) ) /\ x e. L ) /\ t C_ X ) -> ( w e. ( F " s ) -> E. y e. s ( F ` y ) = w ) ) |
| 90 |
85
|
ad3antrrr |
|- ( ( ( ( ph /\ ( s e. B /\ s C_ z ) ) /\ x e. L ) /\ ( t C_ X /\ ( y e. s /\ ( F ` y ) e. x ) ) ) -> Fun F ) |
| 91 |
|
simplrr |
|- ( ( ( ph /\ ( s e. B /\ s C_ z ) ) /\ x e. L ) -> s C_ z ) |
| 92 |
|
simprl |
|- ( ( t C_ X /\ ( y e. s /\ ( F ` y ) e. x ) ) -> y e. s ) |
| 93 |
|
ssel2 |
|- ( ( s C_ z /\ y e. s ) -> y e. z ) |
| 94 |
91 92 93
|
syl2an |
|- ( ( ( ( ph /\ ( s e. B /\ s C_ z ) ) /\ x e. L ) /\ ( t C_ X /\ ( y e. s /\ ( F ` y ) e. x ) ) ) -> y e. z ) |
| 95 |
85
|
ad2antrr |
|- ( ( ( ph /\ ( s e. B /\ s C_ z ) ) /\ y e. s ) -> Fun F ) |
| 96 |
|
fbelss |
|- ( ( B e. ( fBas ` Y ) /\ s e. B ) -> s C_ Y ) |
| 97 |
1 96
|
sylan |
|- ( ( ph /\ s e. B ) -> s C_ Y ) |
| 98 |
3
|
fdmd |
|- ( ph -> dom F = Y ) |
| 99 |
98
|
adantr |
|- ( ( ph /\ s e. B ) -> dom F = Y ) |
| 100 |
97 99
|
sseqtrrd |
|- ( ( ph /\ s e. B ) -> s C_ dom F ) |
| 101 |
100
|
adantrr |
|- ( ( ph /\ ( s e. B /\ s C_ z ) ) -> s C_ dom F ) |
| 102 |
101
|
sselda |
|- ( ( ( ph /\ ( s e. B /\ s C_ z ) ) /\ y e. s ) -> y e. dom F ) |
| 103 |
|
fvimacnv |
|- ( ( Fun F /\ y e. dom F ) -> ( ( F ` y ) e. x <-> y e. ( `' F " x ) ) ) |
| 104 |
95 102 103
|
syl2anc |
|- ( ( ( ph /\ ( s e. B /\ s C_ z ) ) /\ y e. s ) -> ( ( F ` y ) e. x <-> y e. ( `' F " x ) ) ) |
| 105 |
104
|
biimpd |
|- ( ( ( ph /\ ( s e. B /\ s C_ z ) ) /\ y e. s ) -> ( ( F ` y ) e. x -> y e. ( `' F " x ) ) ) |
| 106 |
105
|
impr |
|- ( ( ( ph /\ ( s e. B /\ s C_ z ) ) /\ ( y e. s /\ ( F ` y ) e. x ) ) -> y e. ( `' F " x ) ) |
| 107 |
106
|
ad2ant2rl |
|- ( ( ( ( ph /\ ( s e. B /\ s C_ z ) ) /\ x e. L ) /\ ( t C_ X /\ ( y e. s /\ ( F ` y ) e. x ) ) ) -> y e. ( `' F " x ) ) |
| 108 |
94 107
|
elind |
|- ( ( ( ( ph /\ ( s e. B /\ s C_ z ) ) /\ x e. L ) /\ ( t C_ X /\ ( y e. s /\ ( F ` y ) e. x ) ) ) -> y e. ( z i^i ( `' F " x ) ) ) |
| 109 |
|
inss2 |
|- ( z i^i ( `' F " x ) ) C_ ( `' F " x ) |
| 110 |
|
cnvimass |
|- ( `' F " x ) C_ dom F |
| 111 |
109 110
|
sstri |
|- ( z i^i ( `' F " x ) ) C_ dom F |
| 112 |
|
funfvima2 |
|- ( ( Fun F /\ ( z i^i ( `' F " x ) ) C_ dom F ) -> ( y e. ( z i^i ( `' F " x ) ) -> ( F ` y ) e. ( F " ( z i^i ( `' F " x ) ) ) ) ) |
| 113 |
111 112
|
mpan2 |
|- ( Fun F -> ( y e. ( z i^i ( `' F " x ) ) -> ( F ` y ) e. ( F " ( z i^i ( `' F " x ) ) ) ) ) |
| 114 |
90 108 113
|
sylc |
|- ( ( ( ( ph /\ ( s e. B /\ s C_ z ) ) /\ x e. L ) /\ ( t C_ X /\ ( y e. s /\ ( F ` y ) e. x ) ) ) -> ( F ` y ) e. ( F " ( z i^i ( `' F " x ) ) ) ) |
| 115 |
114
|
anassrs |
|- ( ( ( ( ( ph /\ ( s e. B /\ s C_ z ) ) /\ x e. L ) /\ t C_ X ) /\ ( y e. s /\ ( F ` y ) e. x ) ) -> ( F ` y ) e. ( F " ( z i^i ( `' F " x ) ) ) ) |
| 116 |
115
|
expr |
|- ( ( ( ( ( ph /\ ( s e. B /\ s C_ z ) ) /\ x e. L ) /\ t C_ X ) /\ y e. s ) -> ( ( F ` y ) e. x -> ( F ` y ) e. ( F " ( z i^i ( `' F " x ) ) ) ) ) |
| 117 |
|
eleq1 |
|- ( ( F ` y ) = w -> ( ( F ` y ) e. x <-> w e. x ) ) |
| 118 |
|
eleq1 |
|- ( ( F ` y ) = w -> ( ( F ` y ) e. ( F " ( z i^i ( `' F " x ) ) ) <-> w e. ( F " ( z i^i ( `' F " x ) ) ) ) ) |
| 119 |
117 118
|
imbi12d |
|- ( ( F ` y ) = w -> ( ( ( F ` y ) e. x -> ( F ` y ) e. ( F " ( z i^i ( `' F " x ) ) ) ) <-> ( w e. x -> w e. ( F " ( z i^i ( `' F " x ) ) ) ) ) ) |
| 120 |
116 119
|
syl5ibcom |
|- ( ( ( ( ( ph /\ ( s e. B /\ s C_ z ) ) /\ x e. L ) /\ t C_ X ) /\ y e. s ) -> ( ( F ` y ) = w -> ( w e. x -> w e. ( F " ( z i^i ( `' F " x ) ) ) ) ) ) |
| 121 |
120
|
rexlimdva |
|- ( ( ( ( ph /\ ( s e. B /\ s C_ z ) ) /\ x e. L ) /\ t C_ X ) -> ( E. y e. s ( F ` y ) = w -> ( w e. x -> w e. ( F " ( z i^i ( `' F " x ) ) ) ) ) ) |
| 122 |
89 121
|
syld |
|- ( ( ( ( ph /\ ( s e. B /\ s C_ z ) ) /\ x e. L ) /\ t C_ X ) -> ( w e. ( F " s ) -> ( w e. x -> w e. ( F " ( z i^i ( `' F " x ) ) ) ) ) ) |
| 123 |
122
|
impd |
|- ( ( ( ( ph /\ ( s e. B /\ s C_ z ) ) /\ x e. L ) /\ t C_ X ) -> ( ( w e. ( F " s ) /\ w e. x ) -> w e. ( F " ( z i^i ( `' F " x ) ) ) ) ) |
| 124 |
84 123
|
biimtrid |
|- ( ( ( ( ph /\ ( s e. B /\ s C_ z ) ) /\ x e. L ) /\ t C_ X ) -> ( w e. ( ( F " s ) i^i x ) -> w e. ( F " ( z i^i ( `' F " x ) ) ) ) ) |
| 125 |
124
|
adantrl |
|- ( ( ( ( ph /\ ( s e. B /\ s C_ z ) ) /\ x e. L ) /\ ( ( F " ( z i^i ( `' F " x ) ) ) C_ t /\ t C_ X ) ) -> ( w e. ( ( F " s ) i^i x ) -> w e. ( F " ( z i^i ( `' F " x ) ) ) ) ) |
| 126 |
125
|
ssrdv |
|- ( ( ( ( ph /\ ( s e. B /\ s C_ z ) ) /\ x e. L ) /\ ( ( F " ( z i^i ( `' F " x ) ) ) C_ t /\ t C_ X ) ) -> ( ( F " s ) i^i x ) C_ ( F " ( z i^i ( `' F " x ) ) ) ) |
| 127 |
|
simprl |
|- ( ( ( ( ph /\ ( s e. B /\ s C_ z ) ) /\ x e. L ) /\ ( ( F " ( z i^i ( `' F " x ) ) ) C_ t /\ t C_ X ) ) -> ( F " ( z i^i ( `' F " x ) ) ) C_ t ) |
| 128 |
126 127
|
sstrd |
|- ( ( ( ( ph /\ ( s e. B /\ s C_ z ) ) /\ x e. L ) /\ ( ( F " ( z i^i ( `' F " x ) ) ) C_ t /\ t C_ X ) ) -> ( ( F " s ) i^i x ) C_ t ) |
| 129 |
|
filss |
|- ( ( L e. ( Fil ` X ) /\ ( ( ( F " s ) i^i x ) e. L /\ t C_ X /\ ( ( F " s ) i^i x ) C_ t ) ) -> t e. L ) |
| 130 |
63 82 83 128 129
|
syl13anc |
|- ( ( ( ( ph /\ ( s e. B /\ s C_ z ) ) /\ x e. L ) /\ ( ( F " ( z i^i ( `' F " x ) ) ) C_ t /\ t C_ X ) ) -> t e. L ) |
| 131 |
130
|
exp32 |
|- ( ( ( ph /\ ( s e. B /\ s C_ z ) ) /\ x e. L ) -> ( ( F " ( z i^i ( `' F " x ) ) ) C_ t -> ( t C_ X -> t e. L ) ) ) |
| 132 |
|
ineq2 |
|- ( w = ( `' F " x ) -> ( z i^i w ) = ( z i^i ( `' F " x ) ) ) |
| 133 |
132
|
imaeq2d |
|- ( w = ( `' F " x ) -> ( F " ( z i^i w ) ) = ( F " ( z i^i ( `' F " x ) ) ) ) |
| 134 |
133
|
sseq1d |
|- ( w = ( `' F " x ) -> ( ( F " ( z i^i w ) ) C_ t <-> ( F " ( z i^i ( `' F " x ) ) ) C_ t ) ) |
| 135 |
134
|
imbi1d |
|- ( w = ( `' F " x ) -> ( ( ( F " ( z i^i w ) ) C_ t -> ( t C_ X -> t e. L ) ) <-> ( ( F " ( z i^i ( `' F " x ) ) ) C_ t -> ( t C_ X -> t e. L ) ) ) ) |
| 136 |
131 135
|
syl5ibrcom |
|- ( ( ( ph /\ ( s e. B /\ s C_ z ) ) /\ x e. L ) -> ( w = ( `' F " x ) -> ( ( F " ( z i^i w ) ) C_ t -> ( t C_ X -> t e. L ) ) ) ) |
| 137 |
136
|
rexlimdva |
|- ( ( ph /\ ( s e. B /\ s C_ z ) ) -> ( E. x e. L w = ( `' F " x ) -> ( ( F " ( z i^i w ) ) C_ t -> ( t C_ X -> t e. L ) ) ) ) |
| 138 |
137
|
rexlimdvaa |
|- ( ph -> ( E. s e. B s C_ z -> ( E. x e. L w = ( `' F " x ) -> ( ( F " ( z i^i w ) ) C_ t -> ( t C_ X -> t e. L ) ) ) ) ) |
| 139 |
138
|
imp |
|- ( ( ph /\ E. s e. B s C_ z ) -> ( E. x e. L w = ( `' F " x ) -> ( ( F " ( z i^i w ) ) C_ t -> ( t C_ X -> t e. L ) ) ) ) |
| 140 |
62 139
|
syldan |
|- ( ( ph /\ z e. ( fi ` B ) ) -> ( E. x e. L w = ( `' F " x ) -> ( ( F " ( z i^i w ) ) C_ t -> ( t C_ X -> t e. L ) ) ) ) |
| 141 |
60 140
|
sylbid |
|- ( ( ph /\ z e. ( fi ` B ) ) -> ( w e. ( fi ` ran ( x e. L |-> ( `' F " x ) ) ) -> ( ( F " ( z i^i w ) ) C_ t -> ( t C_ X -> t e. L ) ) ) ) |
| 142 |
141
|
impr |
|- ( ( ph /\ ( z e. ( fi ` B ) /\ w e. ( fi ` ran ( x e. L |-> ( `' F " x ) ) ) ) ) -> ( ( F " ( z i^i w ) ) C_ t -> ( t C_ X -> t e. L ) ) ) |
| 143 |
|
imaeq2 |
|- ( s = ( z i^i w ) -> ( F " s ) = ( F " ( z i^i w ) ) ) |
| 144 |
143
|
sseq1d |
|- ( s = ( z i^i w ) -> ( ( F " s ) C_ t <-> ( F " ( z i^i w ) ) C_ t ) ) |
| 145 |
144
|
imbi1d |
|- ( s = ( z i^i w ) -> ( ( ( F " s ) C_ t -> ( t C_ X -> t e. L ) ) <-> ( ( F " ( z i^i w ) ) C_ t -> ( t C_ X -> t e. L ) ) ) ) |
| 146 |
142 145
|
syl5ibrcom |
|- ( ( ph /\ ( z e. ( fi ` B ) /\ w e. ( fi ` ran ( x e. L |-> ( `' F " x ) ) ) ) ) -> ( s = ( z i^i w ) -> ( ( F " s ) C_ t -> ( t C_ X -> t e. L ) ) ) ) |
| 147 |
146
|
rexlimdvva |
|- ( ph -> ( E. z e. ( fi ` B ) E. w e. ( fi ` ran ( x e. L |-> ( `' F " x ) ) ) s = ( z i^i w ) -> ( ( F " s ) C_ t -> ( t C_ X -> t e. L ) ) ) ) |
| 148 |
48 55 147
|
3jaod |
|- ( ph -> ( ( s e. ( fi ` B ) \/ s e. ( fi ` ran ( x e. L |-> ( `' F " x ) ) ) \/ E. z e. ( fi ` B ) E. w e. ( fi ` ran ( x e. L |-> ( `' F " x ) ) ) s = ( z i^i w ) ) -> ( ( F " s ) C_ t -> ( t C_ X -> t e. L ) ) ) ) |
| 149 |
47 148
|
sylbid |
|- ( ph -> ( s e. ( fi ` ( B u. ran ( x e. L |-> ( `' F " x ) ) ) ) -> ( ( F " s ) C_ t -> ( t C_ X -> t e. L ) ) ) ) |
| 150 |
149
|
rexlimdv |
|- ( ph -> ( E. s e. ( fi ` ( B u. ran ( x e. L |-> ( `' F " x ) ) ) ) ( F " s ) C_ t -> ( t C_ X -> t e. L ) ) ) |
| 151 |
150
|
impcomd |
|- ( ph -> ( ( t C_ X /\ E. s e. ( fi ` ( B u. ran ( x e. L |-> ( `' F " x ) ) ) ) ( F " s ) C_ t ) -> t e. L ) ) |
| 152 |
45 151
|
impbid |
|- ( ph -> ( t e. L <-> ( t C_ X /\ E. s e. ( fi ` ( B u. ran ( x e. L |-> ( `' F " x ) ) ) ) ( F " s ) C_ t ) ) ) |