Step |
Hyp |
Ref |
Expression |
1 |
|
heibor.1 |
|- J = ( MetOpen ` D ) |
2 |
|
heibor.3 |
|- K = { u | -. E. v e. ( ~P U i^i Fin ) u C_ U. v } |
3 |
|
heibor.4 |
|- G = { <. y , n >. | ( n e. NN0 /\ y e. ( F ` n ) /\ ( y B n ) e. K ) } |
4 |
|
heibor.5 |
|- B = ( z e. X , m e. NN0 |-> ( z ( ball ` D ) ( 1 / ( 2 ^ m ) ) ) ) |
5 |
|
heibor.6 |
|- ( ph -> D e. ( CMet ` X ) ) |
6 |
|
heibor.7 |
|- ( ph -> F : NN0 --> ( ~P X i^i Fin ) ) |
7 |
|
heibor.8 |
|- ( ph -> A. n e. NN0 X = U_ y e. ( F ` n ) ( y B n ) ) |
8 |
|
heibor.9 |
|- ( ph -> A. x e. G ( ( T ` x ) G ( ( 2nd ` x ) + 1 ) /\ ( ( B ` x ) i^i ( ( T ` x ) B ( ( 2nd ` x ) + 1 ) ) ) e. K ) ) |
9 |
|
heibor.10 |
|- ( ph -> C G 0 ) |
10 |
|
heibor.11 |
|- S = seq 0 ( T , ( m e. NN0 |-> if ( m = 0 , C , ( m - 1 ) ) ) ) |
11 |
|
heibor.12 |
|- M = ( n e. NN |-> <. ( S ` n ) , ( 3 / ( 2 ^ n ) ) >. ) |
12 |
|
nnnn0 |
|- ( k e. NN -> k e. NN0 ) |
13 |
|
cmetmet |
|- ( D e. ( CMet ` X ) -> D e. ( Met ` X ) ) |
14 |
5 13
|
syl |
|- ( ph -> D e. ( Met ` X ) ) |
15 |
|
metxmet |
|- ( D e. ( Met ` X ) -> D e. ( *Met ` X ) ) |
16 |
14 15
|
syl |
|- ( ph -> D e. ( *Met ` X ) ) |
17 |
16
|
adantr |
|- ( ( ph /\ k e. NN0 ) -> D e. ( *Met ` X ) ) |
18 |
|
inss1 |
|- ( ~P X i^i Fin ) C_ ~P X |
19 |
|
fss |
|- ( ( F : NN0 --> ( ~P X i^i Fin ) /\ ( ~P X i^i Fin ) C_ ~P X ) -> F : NN0 --> ~P X ) |
20 |
6 18 19
|
sylancl |
|- ( ph -> F : NN0 --> ~P X ) |
21 |
|
peano2nn0 |
|- ( k e. NN0 -> ( k + 1 ) e. NN0 ) |
22 |
|
ffvelrn |
|- ( ( F : NN0 --> ~P X /\ ( k + 1 ) e. NN0 ) -> ( F ` ( k + 1 ) ) e. ~P X ) |
23 |
20 21 22
|
syl2an |
|- ( ( ph /\ k e. NN0 ) -> ( F ` ( k + 1 ) ) e. ~P X ) |
24 |
23
|
elpwid |
|- ( ( ph /\ k e. NN0 ) -> ( F ` ( k + 1 ) ) C_ X ) |
25 |
1 2 3 4 5 6 7 8 9 10
|
heiborlem4 |
|- ( ( ph /\ ( k + 1 ) e. NN0 ) -> ( S ` ( k + 1 ) ) G ( k + 1 ) ) |
26 |
21 25
|
sylan2 |
|- ( ( ph /\ k e. NN0 ) -> ( S ` ( k + 1 ) ) G ( k + 1 ) ) |
27 |
|
fvex |
|- ( S ` ( k + 1 ) ) e. _V |
28 |
|
ovex |
|- ( k + 1 ) e. _V |
29 |
1 2 3 27 28
|
heiborlem2 |
|- ( ( S ` ( k + 1 ) ) G ( k + 1 ) <-> ( ( k + 1 ) e. NN0 /\ ( S ` ( k + 1 ) ) e. ( F ` ( k + 1 ) ) /\ ( ( S ` ( k + 1 ) ) B ( k + 1 ) ) e. K ) ) |
30 |
29
|
simp2bi |
|- ( ( S ` ( k + 1 ) ) G ( k + 1 ) -> ( S ` ( k + 1 ) ) e. ( F ` ( k + 1 ) ) ) |
31 |
26 30
|
syl |
|- ( ( ph /\ k e. NN0 ) -> ( S ` ( k + 1 ) ) e. ( F ` ( k + 1 ) ) ) |
32 |
24 31
|
sseldd |
|- ( ( ph /\ k e. NN0 ) -> ( S ` ( k + 1 ) ) e. X ) |
33 |
20
|
ffvelrnda |
|- ( ( ph /\ k e. NN0 ) -> ( F ` k ) e. ~P X ) |
34 |
33
|
elpwid |
|- ( ( ph /\ k e. NN0 ) -> ( F ` k ) C_ X ) |
35 |
1 2 3 4 5 6 7 8 9 10
|
heiborlem4 |
|- ( ( ph /\ k e. NN0 ) -> ( S ` k ) G k ) |
36 |
|
fvex |
|- ( S ` k ) e. _V |
37 |
|
vex |
|- k e. _V |
38 |
1 2 3 36 37
|
heiborlem2 |
|- ( ( S ` k ) G k <-> ( k e. NN0 /\ ( S ` k ) e. ( F ` k ) /\ ( ( S ` k ) B k ) e. K ) ) |
39 |
38
|
simp2bi |
|- ( ( S ` k ) G k -> ( S ` k ) e. ( F ` k ) ) |
40 |
35 39
|
syl |
|- ( ( ph /\ k e. NN0 ) -> ( S ` k ) e. ( F ` k ) ) |
41 |
34 40
|
sseldd |
|- ( ( ph /\ k e. NN0 ) -> ( S ` k ) e. X ) |
42 |
|
3re |
|- 3 e. RR |
43 |
|
2nn |
|- 2 e. NN |
44 |
|
nnexpcl |
|- ( ( 2 e. NN /\ ( k + 1 ) e. NN0 ) -> ( 2 ^ ( k + 1 ) ) e. NN ) |
45 |
43 21 44
|
sylancr |
|- ( k e. NN0 -> ( 2 ^ ( k + 1 ) ) e. NN ) |
46 |
45
|
nnrpd |
|- ( k e. NN0 -> ( 2 ^ ( k + 1 ) ) e. RR+ ) |
47 |
46
|
adantl |
|- ( ( ph /\ k e. NN0 ) -> ( 2 ^ ( k + 1 ) ) e. RR+ ) |
48 |
|
rerpdivcl |
|- ( ( 3 e. RR /\ ( 2 ^ ( k + 1 ) ) e. RR+ ) -> ( 3 / ( 2 ^ ( k + 1 ) ) ) e. RR ) |
49 |
42 47 48
|
sylancr |
|- ( ( ph /\ k e. NN0 ) -> ( 3 / ( 2 ^ ( k + 1 ) ) ) e. RR ) |
50 |
|
nnexpcl |
|- ( ( 2 e. NN /\ k e. NN0 ) -> ( 2 ^ k ) e. NN ) |
51 |
43 50
|
mpan |
|- ( k e. NN0 -> ( 2 ^ k ) e. NN ) |
52 |
51
|
nnrpd |
|- ( k e. NN0 -> ( 2 ^ k ) e. RR+ ) |
53 |
52
|
adantl |
|- ( ( ph /\ k e. NN0 ) -> ( 2 ^ k ) e. RR+ ) |
54 |
|
rerpdivcl |
|- ( ( 3 e. RR /\ ( 2 ^ k ) e. RR+ ) -> ( 3 / ( 2 ^ k ) ) e. RR ) |
55 |
42 53 54
|
sylancr |
|- ( ( ph /\ k e. NN0 ) -> ( 3 / ( 2 ^ k ) ) e. RR ) |
56 |
|
oveq1 |
|- ( z = ( S ` k ) -> ( z ( ball ` D ) ( 1 / ( 2 ^ m ) ) ) = ( ( S ` k ) ( ball ` D ) ( 1 / ( 2 ^ m ) ) ) ) |
57 |
|
oveq2 |
|- ( m = k -> ( 2 ^ m ) = ( 2 ^ k ) ) |
58 |
57
|
oveq2d |
|- ( m = k -> ( 1 / ( 2 ^ m ) ) = ( 1 / ( 2 ^ k ) ) ) |
59 |
58
|
oveq2d |
|- ( m = k -> ( ( S ` k ) ( ball ` D ) ( 1 / ( 2 ^ m ) ) ) = ( ( S ` k ) ( ball ` D ) ( 1 / ( 2 ^ k ) ) ) ) |
60 |
|
ovex |
|- ( ( S ` k ) ( ball ` D ) ( 1 / ( 2 ^ k ) ) ) e. _V |
61 |
56 59 4 60
|
ovmpo |
|- ( ( ( S ` k ) e. X /\ k e. NN0 ) -> ( ( S ` k ) B k ) = ( ( S ` k ) ( ball ` D ) ( 1 / ( 2 ^ k ) ) ) ) |
62 |
41 61
|
sylancom |
|- ( ( ph /\ k e. NN0 ) -> ( ( S ` k ) B k ) = ( ( S ` k ) ( ball ` D ) ( 1 / ( 2 ^ k ) ) ) ) |
63 |
|
df-br |
|- ( ( S ` k ) G k <-> <. ( S ` k ) , k >. e. G ) |
64 |
|
fveq2 |
|- ( x = <. ( S ` k ) , k >. -> ( T ` x ) = ( T ` <. ( S ` k ) , k >. ) ) |
65 |
|
df-ov |
|- ( ( S ` k ) T k ) = ( T ` <. ( S ` k ) , k >. ) |
66 |
64 65
|
eqtr4di |
|- ( x = <. ( S ` k ) , k >. -> ( T ` x ) = ( ( S ` k ) T k ) ) |
67 |
36 37
|
op2ndd |
|- ( x = <. ( S ` k ) , k >. -> ( 2nd ` x ) = k ) |
68 |
67
|
oveq1d |
|- ( x = <. ( S ` k ) , k >. -> ( ( 2nd ` x ) + 1 ) = ( k + 1 ) ) |
69 |
66 68
|
breq12d |
|- ( x = <. ( S ` k ) , k >. -> ( ( T ` x ) G ( ( 2nd ` x ) + 1 ) <-> ( ( S ` k ) T k ) G ( k + 1 ) ) ) |
70 |
|
fveq2 |
|- ( x = <. ( S ` k ) , k >. -> ( B ` x ) = ( B ` <. ( S ` k ) , k >. ) ) |
71 |
|
df-ov |
|- ( ( S ` k ) B k ) = ( B ` <. ( S ` k ) , k >. ) |
72 |
70 71
|
eqtr4di |
|- ( x = <. ( S ` k ) , k >. -> ( B ` x ) = ( ( S ` k ) B k ) ) |
73 |
66 68
|
oveq12d |
|- ( x = <. ( S ` k ) , k >. -> ( ( T ` x ) B ( ( 2nd ` x ) + 1 ) ) = ( ( ( S ` k ) T k ) B ( k + 1 ) ) ) |
74 |
72 73
|
ineq12d |
|- ( x = <. ( S ` k ) , k >. -> ( ( B ` x ) i^i ( ( T ` x ) B ( ( 2nd ` x ) + 1 ) ) ) = ( ( ( S ` k ) B k ) i^i ( ( ( S ` k ) T k ) B ( k + 1 ) ) ) ) |
75 |
74
|
eleq1d |
|- ( x = <. ( S ` k ) , k >. -> ( ( ( B ` x ) i^i ( ( T ` x ) B ( ( 2nd ` x ) + 1 ) ) ) e. K <-> ( ( ( S ` k ) B k ) i^i ( ( ( S ` k ) T k ) B ( k + 1 ) ) ) e. K ) ) |
76 |
69 75
|
anbi12d |
|- ( x = <. ( S ` k ) , k >. -> ( ( ( T ` x ) G ( ( 2nd ` x ) + 1 ) /\ ( ( B ` x ) i^i ( ( T ` x ) B ( ( 2nd ` x ) + 1 ) ) ) e. K ) <-> ( ( ( S ` k ) T k ) G ( k + 1 ) /\ ( ( ( S ` k ) B k ) i^i ( ( ( S ` k ) T k ) B ( k + 1 ) ) ) e. K ) ) ) |
77 |
76
|
rspccv |
|- ( A. x e. G ( ( T ` x ) G ( ( 2nd ` x ) + 1 ) /\ ( ( B ` x ) i^i ( ( T ` x ) B ( ( 2nd ` x ) + 1 ) ) ) e. K ) -> ( <. ( S ` k ) , k >. e. G -> ( ( ( S ` k ) T k ) G ( k + 1 ) /\ ( ( ( S ` k ) B k ) i^i ( ( ( S ` k ) T k ) B ( k + 1 ) ) ) e. K ) ) ) |
78 |
8 77
|
syl |
|- ( ph -> ( <. ( S ` k ) , k >. e. G -> ( ( ( S ` k ) T k ) G ( k + 1 ) /\ ( ( ( S ` k ) B k ) i^i ( ( ( S ` k ) T k ) B ( k + 1 ) ) ) e. K ) ) ) |
79 |
63 78
|
syl5bi |
|- ( ph -> ( ( S ` k ) G k -> ( ( ( S ` k ) T k ) G ( k + 1 ) /\ ( ( ( S ` k ) B k ) i^i ( ( ( S ` k ) T k ) B ( k + 1 ) ) ) e. K ) ) ) |
80 |
79
|
adantr |
|- ( ( ph /\ k e. NN0 ) -> ( ( S ` k ) G k -> ( ( ( S ` k ) T k ) G ( k + 1 ) /\ ( ( ( S ` k ) B k ) i^i ( ( ( S ` k ) T k ) B ( k + 1 ) ) ) e. K ) ) ) |
81 |
35 80
|
mpd |
|- ( ( ph /\ k e. NN0 ) -> ( ( ( S ` k ) T k ) G ( k + 1 ) /\ ( ( ( S ` k ) B k ) i^i ( ( ( S ` k ) T k ) B ( k + 1 ) ) ) e. K ) ) |
82 |
81
|
simpld |
|- ( ( ph /\ k e. NN0 ) -> ( ( S ` k ) T k ) G ( k + 1 ) ) |
83 |
|
ovex |
|- ( ( S ` k ) T k ) e. _V |
84 |
1 2 3 83 28
|
heiborlem2 |
|- ( ( ( S ` k ) T k ) G ( k + 1 ) <-> ( ( k + 1 ) e. NN0 /\ ( ( S ` k ) T k ) e. ( F ` ( k + 1 ) ) /\ ( ( ( S ` k ) T k ) B ( k + 1 ) ) e. K ) ) |
85 |
84
|
simp2bi |
|- ( ( ( S ` k ) T k ) G ( k + 1 ) -> ( ( S ` k ) T k ) e. ( F ` ( k + 1 ) ) ) |
86 |
82 85
|
syl |
|- ( ( ph /\ k e. NN0 ) -> ( ( S ` k ) T k ) e. ( F ` ( k + 1 ) ) ) |
87 |
24 86
|
sseldd |
|- ( ( ph /\ k e. NN0 ) -> ( ( S ` k ) T k ) e. X ) |
88 |
21
|
adantl |
|- ( ( ph /\ k e. NN0 ) -> ( k + 1 ) e. NN0 ) |
89 |
|
oveq1 |
|- ( z = ( ( S ` k ) T k ) -> ( z ( ball ` D ) ( 1 / ( 2 ^ m ) ) ) = ( ( ( S ` k ) T k ) ( ball ` D ) ( 1 / ( 2 ^ m ) ) ) ) |
90 |
|
oveq2 |
|- ( m = ( k + 1 ) -> ( 2 ^ m ) = ( 2 ^ ( k + 1 ) ) ) |
91 |
90
|
oveq2d |
|- ( m = ( k + 1 ) -> ( 1 / ( 2 ^ m ) ) = ( 1 / ( 2 ^ ( k + 1 ) ) ) ) |
92 |
91
|
oveq2d |
|- ( m = ( k + 1 ) -> ( ( ( S ` k ) T k ) ( ball ` D ) ( 1 / ( 2 ^ m ) ) ) = ( ( ( S ` k ) T k ) ( ball ` D ) ( 1 / ( 2 ^ ( k + 1 ) ) ) ) ) |
93 |
|
ovex |
|- ( ( ( S ` k ) T k ) ( ball ` D ) ( 1 / ( 2 ^ ( k + 1 ) ) ) ) e. _V |
94 |
89 92 4 93
|
ovmpo |
|- ( ( ( ( S ` k ) T k ) e. X /\ ( k + 1 ) e. NN0 ) -> ( ( ( S ` k ) T k ) B ( k + 1 ) ) = ( ( ( S ` k ) T k ) ( ball ` D ) ( 1 / ( 2 ^ ( k + 1 ) ) ) ) ) |
95 |
87 88 94
|
syl2anc |
|- ( ( ph /\ k e. NN0 ) -> ( ( ( S ` k ) T k ) B ( k + 1 ) ) = ( ( ( S ` k ) T k ) ( ball ` D ) ( 1 / ( 2 ^ ( k + 1 ) ) ) ) ) |
96 |
62 95
|
ineq12d |
|- ( ( ph /\ k e. NN0 ) -> ( ( ( S ` k ) B k ) i^i ( ( ( S ` k ) T k ) B ( k + 1 ) ) ) = ( ( ( S ` k ) ( ball ` D ) ( 1 / ( 2 ^ k ) ) ) i^i ( ( ( S ` k ) T k ) ( ball ` D ) ( 1 / ( 2 ^ ( k + 1 ) ) ) ) ) ) |
97 |
81
|
simprd |
|- ( ( ph /\ k e. NN0 ) -> ( ( ( S ` k ) B k ) i^i ( ( ( S ` k ) T k ) B ( k + 1 ) ) ) e. K ) |
98 |
|
0elpw |
|- (/) e. ~P U |
99 |
|
0fin |
|- (/) e. Fin |
100 |
|
elin |
|- ( (/) e. ( ~P U i^i Fin ) <-> ( (/) e. ~P U /\ (/) e. Fin ) ) |
101 |
98 99 100
|
mpbir2an |
|- (/) e. ( ~P U i^i Fin ) |
102 |
|
0ss |
|- (/) C_ U. (/) |
103 |
|
unieq |
|- ( v = (/) -> U. v = U. (/) ) |
104 |
103
|
sseq2d |
|- ( v = (/) -> ( (/) C_ U. v <-> (/) C_ U. (/) ) ) |
105 |
104
|
rspcev |
|- ( ( (/) e. ( ~P U i^i Fin ) /\ (/) C_ U. (/) ) -> E. v e. ( ~P U i^i Fin ) (/) C_ U. v ) |
106 |
101 102 105
|
mp2an |
|- E. v e. ( ~P U i^i Fin ) (/) C_ U. v |
107 |
|
0ex |
|- (/) e. _V |
108 |
|
sseq1 |
|- ( u = (/) -> ( u C_ U. v <-> (/) C_ U. v ) ) |
109 |
108
|
rexbidv |
|- ( u = (/) -> ( E. v e. ( ~P U i^i Fin ) u C_ U. v <-> E. v e. ( ~P U i^i Fin ) (/) C_ U. v ) ) |
110 |
109
|
notbid |
|- ( u = (/) -> ( -. E. v e. ( ~P U i^i Fin ) u C_ U. v <-> -. E. v e. ( ~P U i^i Fin ) (/) C_ U. v ) ) |
111 |
107 110 2
|
elab2 |
|- ( (/) e. K <-> -. E. v e. ( ~P U i^i Fin ) (/) C_ U. v ) |
112 |
111
|
con2bii |
|- ( E. v e. ( ~P U i^i Fin ) (/) C_ U. v <-> -. (/) e. K ) |
113 |
106 112
|
mpbi |
|- -. (/) e. K |
114 |
|
nelne2 |
|- ( ( ( ( ( S ` k ) B k ) i^i ( ( ( S ` k ) T k ) B ( k + 1 ) ) ) e. K /\ -. (/) e. K ) -> ( ( ( S ` k ) B k ) i^i ( ( ( S ` k ) T k ) B ( k + 1 ) ) ) =/= (/) ) |
115 |
97 113 114
|
sylancl |
|- ( ( ph /\ k e. NN0 ) -> ( ( ( S ` k ) B k ) i^i ( ( ( S ` k ) T k ) B ( k + 1 ) ) ) =/= (/) ) |
116 |
96 115
|
eqnetrrd |
|- ( ( ph /\ k e. NN0 ) -> ( ( ( S ` k ) ( ball ` D ) ( 1 / ( 2 ^ k ) ) ) i^i ( ( ( S ` k ) T k ) ( ball ` D ) ( 1 / ( 2 ^ ( k + 1 ) ) ) ) ) =/= (/) ) |
117 |
52
|
rpreccld |
|- ( k e. NN0 -> ( 1 / ( 2 ^ k ) ) e. RR+ ) |
118 |
117
|
adantl |
|- ( ( ph /\ k e. NN0 ) -> ( 1 / ( 2 ^ k ) ) e. RR+ ) |
119 |
118
|
rpred |
|- ( ( ph /\ k e. NN0 ) -> ( 1 / ( 2 ^ k ) ) e. RR ) |
120 |
46
|
rpreccld |
|- ( k e. NN0 -> ( 1 / ( 2 ^ ( k + 1 ) ) ) e. RR+ ) |
121 |
120
|
adantl |
|- ( ( ph /\ k e. NN0 ) -> ( 1 / ( 2 ^ ( k + 1 ) ) ) e. RR+ ) |
122 |
121
|
rpred |
|- ( ( ph /\ k e. NN0 ) -> ( 1 / ( 2 ^ ( k + 1 ) ) ) e. RR ) |
123 |
|
rexadd |
|- ( ( ( 1 / ( 2 ^ k ) ) e. RR /\ ( 1 / ( 2 ^ ( k + 1 ) ) ) e. RR ) -> ( ( 1 / ( 2 ^ k ) ) +e ( 1 / ( 2 ^ ( k + 1 ) ) ) ) = ( ( 1 / ( 2 ^ k ) ) + ( 1 / ( 2 ^ ( k + 1 ) ) ) ) ) |
124 |
119 122 123
|
syl2anc |
|- ( ( ph /\ k e. NN0 ) -> ( ( 1 / ( 2 ^ k ) ) +e ( 1 / ( 2 ^ ( k + 1 ) ) ) ) = ( ( 1 / ( 2 ^ k ) ) + ( 1 / ( 2 ^ ( k + 1 ) ) ) ) ) |
125 |
124
|
breq1d |
|- ( ( ph /\ k e. NN0 ) -> ( ( ( 1 / ( 2 ^ k ) ) +e ( 1 / ( 2 ^ ( k + 1 ) ) ) ) <_ ( ( S ` k ) D ( ( S ` k ) T k ) ) <-> ( ( 1 / ( 2 ^ k ) ) + ( 1 / ( 2 ^ ( k + 1 ) ) ) ) <_ ( ( S ` k ) D ( ( S ` k ) T k ) ) ) ) |
126 |
118
|
rpxrd |
|- ( ( ph /\ k e. NN0 ) -> ( 1 / ( 2 ^ k ) ) e. RR* ) |
127 |
121
|
rpxrd |
|- ( ( ph /\ k e. NN0 ) -> ( 1 / ( 2 ^ ( k + 1 ) ) ) e. RR* ) |
128 |
|
bldisj |
|- ( ( ( D e. ( *Met ` X ) /\ ( S ` k ) e. X /\ ( ( S ` k ) T k ) e. X ) /\ ( ( 1 / ( 2 ^ k ) ) e. RR* /\ ( 1 / ( 2 ^ ( k + 1 ) ) ) e. RR* /\ ( ( 1 / ( 2 ^ k ) ) +e ( 1 / ( 2 ^ ( k + 1 ) ) ) ) <_ ( ( S ` k ) D ( ( S ` k ) T k ) ) ) ) -> ( ( ( S ` k ) ( ball ` D ) ( 1 / ( 2 ^ k ) ) ) i^i ( ( ( S ` k ) T k ) ( ball ` D ) ( 1 / ( 2 ^ ( k + 1 ) ) ) ) ) = (/) ) |
129 |
128
|
3exp2 |
|- ( ( D e. ( *Met ` X ) /\ ( S ` k ) e. X /\ ( ( S ` k ) T k ) e. X ) -> ( ( 1 / ( 2 ^ k ) ) e. RR* -> ( ( 1 / ( 2 ^ ( k + 1 ) ) ) e. RR* -> ( ( ( 1 / ( 2 ^ k ) ) +e ( 1 / ( 2 ^ ( k + 1 ) ) ) ) <_ ( ( S ` k ) D ( ( S ` k ) T k ) ) -> ( ( ( S ` k ) ( ball ` D ) ( 1 / ( 2 ^ k ) ) ) i^i ( ( ( S ` k ) T k ) ( ball ` D ) ( 1 / ( 2 ^ ( k + 1 ) ) ) ) ) = (/) ) ) ) ) |
130 |
129
|
imp32 |
|- ( ( ( D e. ( *Met ` X ) /\ ( S ` k ) e. X /\ ( ( S ` k ) T k ) e. X ) /\ ( ( 1 / ( 2 ^ k ) ) e. RR* /\ ( 1 / ( 2 ^ ( k + 1 ) ) ) e. RR* ) ) -> ( ( ( 1 / ( 2 ^ k ) ) +e ( 1 / ( 2 ^ ( k + 1 ) ) ) ) <_ ( ( S ` k ) D ( ( S ` k ) T k ) ) -> ( ( ( S ` k ) ( ball ` D ) ( 1 / ( 2 ^ k ) ) ) i^i ( ( ( S ` k ) T k ) ( ball ` D ) ( 1 / ( 2 ^ ( k + 1 ) ) ) ) ) = (/) ) ) |
131 |
17 41 87 126 127 130
|
syl32anc |
|- ( ( ph /\ k e. NN0 ) -> ( ( ( 1 / ( 2 ^ k ) ) +e ( 1 / ( 2 ^ ( k + 1 ) ) ) ) <_ ( ( S ` k ) D ( ( S ` k ) T k ) ) -> ( ( ( S ` k ) ( ball ` D ) ( 1 / ( 2 ^ k ) ) ) i^i ( ( ( S ` k ) T k ) ( ball ` D ) ( 1 / ( 2 ^ ( k + 1 ) ) ) ) ) = (/) ) ) |
132 |
125 131
|
sylbird |
|- ( ( ph /\ k e. NN0 ) -> ( ( ( 1 / ( 2 ^ k ) ) + ( 1 / ( 2 ^ ( k + 1 ) ) ) ) <_ ( ( S ` k ) D ( ( S ` k ) T k ) ) -> ( ( ( S ` k ) ( ball ` D ) ( 1 / ( 2 ^ k ) ) ) i^i ( ( ( S ` k ) T k ) ( ball ` D ) ( 1 / ( 2 ^ ( k + 1 ) ) ) ) ) = (/) ) ) |
133 |
132
|
necon3ad |
|- ( ( ph /\ k e. NN0 ) -> ( ( ( ( S ` k ) ( ball ` D ) ( 1 / ( 2 ^ k ) ) ) i^i ( ( ( S ` k ) T k ) ( ball ` D ) ( 1 / ( 2 ^ ( k + 1 ) ) ) ) ) =/= (/) -> -. ( ( 1 / ( 2 ^ k ) ) + ( 1 / ( 2 ^ ( k + 1 ) ) ) ) <_ ( ( S ` k ) D ( ( S ` k ) T k ) ) ) ) |
134 |
116 133
|
mpd |
|- ( ( ph /\ k e. NN0 ) -> -. ( ( 1 / ( 2 ^ k ) ) + ( 1 / ( 2 ^ ( k + 1 ) ) ) ) <_ ( ( S ` k ) D ( ( S ` k ) T k ) ) ) |
135 |
118 121
|
rpaddcld |
|- ( ( ph /\ k e. NN0 ) -> ( ( 1 / ( 2 ^ k ) ) + ( 1 / ( 2 ^ ( k + 1 ) ) ) ) e. RR+ ) |
136 |
135
|
rpred |
|- ( ( ph /\ k e. NN0 ) -> ( ( 1 / ( 2 ^ k ) ) + ( 1 / ( 2 ^ ( k + 1 ) ) ) ) e. RR ) |
137 |
14
|
adantr |
|- ( ( ph /\ k e. NN0 ) -> D e. ( Met ` X ) ) |
138 |
|
metcl |
|- ( ( D e. ( Met ` X ) /\ ( S ` k ) e. X /\ ( ( S ` k ) T k ) e. X ) -> ( ( S ` k ) D ( ( S ` k ) T k ) ) e. RR ) |
139 |
137 41 87 138
|
syl3anc |
|- ( ( ph /\ k e. NN0 ) -> ( ( S ` k ) D ( ( S ` k ) T k ) ) e. RR ) |
140 |
136 139
|
letrid |
|- ( ( ph /\ k e. NN0 ) -> ( ( ( 1 / ( 2 ^ k ) ) + ( 1 / ( 2 ^ ( k + 1 ) ) ) ) <_ ( ( S ` k ) D ( ( S ` k ) T k ) ) \/ ( ( S ` k ) D ( ( S ` k ) T k ) ) <_ ( ( 1 / ( 2 ^ k ) ) + ( 1 / ( 2 ^ ( k + 1 ) ) ) ) ) ) |
141 |
140
|
ord |
|- ( ( ph /\ k e. NN0 ) -> ( -. ( ( 1 / ( 2 ^ k ) ) + ( 1 / ( 2 ^ ( k + 1 ) ) ) ) <_ ( ( S ` k ) D ( ( S ` k ) T k ) ) -> ( ( S ` k ) D ( ( S ` k ) T k ) ) <_ ( ( 1 / ( 2 ^ k ) ) + ( 1 / ( 2 ^ ( k + 1 ) ) ) ) ) ) |
142 |
134 141
|
mpd |
|- ( ( ph /\ k e. NN0 ) -> ( ( S ` k ) D ( ( S ` k ) T k ) ) <_ ( ( 1 / ( 2 ^ k ) ) + ( 1 / ( 2 ^ ( k + 1 ) ) ) ) ) |
143 |
|
seqp1 |
|- ( k e. ( ZZ>= ` 0 ) -> ( seq 0 ( T , ( m e. NN0 |-> if ( m = 0 , C , ( m - 1 ) ) ) ) ` ( k + 1 ) ) = ( ( seq 0 ( T , ( m e. NN0 |-> if ( m = 0 , C , ( m - 1 ) ) ) ) ` k ) T ( ( m e. NN0 |-> if ( m = 0 , C , ( m - 1 ) ) ) ` ( k + 1 ) ) ) ) |
144 |
|
nn0uz |
|- NN0 = ( ZZ>= ` 0 ) |
145 |
143 144
|
eleq2s |
|- ( k e. NN0 -> ( seq 0 ( T , ( m e. NN0 |-> if ( m = 0 , C , ( m - 1 ) ) ) ) ` ( k + 1 ) ) = ( ( seq 0 ( T , ( m e. NN0 |-> if ( m = 0 , C , ( m - 1 ) ) ) ) ` k ) T ( ( m e. NN0 |-> if ( m = 0 , C , ( m - 1 ) ) ) ` ( k + 1 ) ) ) ) |
146 |
10
|
fveq1i |
|- ( S ` ( k + 1 ) ) = ( seq 0 ( T , ( m e. NN0 |-> if ( m = 0 , C , ( m - 1 ) ) ) ) ` ( k + 1 ) ) |
147 |
10
|
fveq1i |
|- ( S ` k ) = ( seq 0 ( T , ( m e. NN0 |-> if ( m = 0 , C , ( m - 1 ) ) ) ) ` k ) |
148 |
147
|
oveq1i |
|- ( ( S ` k ) T ( ( m e. NN0 |-> if ( m = 0 , C , ( m - 1 ) ) ) ` ( k + 1 ) ) ) = ( ( seq 0 ( T , ( m e. NN0 |-> if ( m = 0 , C , ( m - 1 ) ) ) ) ` k ) T ( ( m e. NN0 |-> if ( m = 0 , C , ( m - 1 ) ) ) ` ( k + 1 ) ) ) |
149 |
145 146 148
|
3eqtr4g |
|- ( k e. NN0 -> ( S ` ( k + 1 ) ) = ( ( S ` k ) T ( ( m e. NN0 |-> if ( m = 0 , C , ( m - 1 ) ) ) ` ( k + 1 ) ) ) ) |
150 |
|
eqid |
|- ( m e. NN0 |-> if ( m = 0 , C , ( m - 1 ) ) ) = ( m e. NN0 |-> if ( m = 0 , C , ( m - 1 ) ) ) |
151 |
|
eqeq1 |
|- ( m = ( k + 1 ) -> ( m = 0 <-> ( k + 1 ) = 0 ) ) |
152 |
|
oveq1 |
|- ( m = ( k + 1 ) -> ( m - 1 ) = ( ( k + 1 ) - 1 ) ) |
153 |
151 152
|
ifbieq2d |
|- ( m = ( k + 1 ) -> if ( m = 0 , C , ( m - 1 ) ) = if ( ( k + 1 ) = 0 , C , ( ( k + 1 ) - 1 ) ) ) |
154 |
|
nn0p1nn |
|- ( k e. NN0 -> ( k + 1 ) e. NN ) |
155 |
|
nnne0 |
|- ( ( k + 1 ) e. NN -> ( k + 1 ) =/= 0 ) |
156 |
155
|
neneqd |
|- ( ( k + 1 ) e. NN -> -. ( k + 1 ) = 0 ) |
157 |
154 156
|
syl |
|- ( k e. NN0 -> -. ( k + 1 ) = 0 ) |
158 |
157
|
iffalsed |
|- ( k e. NN0 -> if ( ( k + 1 ) = 0 , C , ( ( k + 1 ) - 1 ) ) = ( ( k + 1 ) - 1 ) ) |
159 |
|
ovex |
|- ( ( k + 1 ) - 1 ) e. _V |
160 |
158 159
|
eqeltrdi |
|- ( k e. NN0 -> if ( ( k + 1 ) = 0 , C , ( ( k + 1 ) - 1 ) ) e. _V ) |
161 |
150 153 21 160
|
fvmptd3 |
|- ( k e. NN0 -> ( ( m e. NN0 |-> if ( m = 0 , C , ( m - 1 ) ) ) ` ( k + 1 ) ) = if ( ( k + 1 ) = 0 , C , ( ( k + 1 ) - 1 ) ) ) |
162 |
|
nn0cn |
|- ( k e. NN0 -> k e. CC ) |
163 |
|
ax-1cn |
|- 1 e. CC |
164 |
|
pncan |
|- ( ( k e. CC /\ 1 e. CC ) -> ( ( k + 1 ) - 1 ) = k ) |
165 |
162 163 164
|
sylancl |
|- ( k e. NN0 -> ( ( k + 1 ) - 1 ) = k ) |
166 |
161 158 165
|
3eqtrd |
|- ( k e. NN0 -> ( ( m e. NN0 |-> if ( m = 0 , C , ( m - 1 ) ) ) ` ( k + 1 ) ) = k ) |
167 |
166
|
oveq2d |
|- ( k e. NN0 -> ( ( S ` k ) T ( ( m e. NN0 |-> if ( m = 0 , C , ( m - 1 ) ) ) ` ( k + 1 ) ) ) = ( ( S ` k ) T k ) ) |
168 |
149 167
|
eqtrd |
|- ( k e. NN0 -> ( S ` ( k + 1 ) ) = ( ( S ` k ) T k ) ) |
169 |
168
|
adantl |
|- ( ( ph /\ k e. NN0 ) -> ( S ` ( k + 1 ) ) = ( ( S ` k ) T k ) ) |
170 |
169
|
oveq1d |
|- ( ( ph /\ k e. NN0 ) -> ( ( S ` ( k + 1 ) ) D ( S ` k ) ) = ( ( ( S ` k ) T k ) D ( S ` k ) ) ) |
171 |
|
metsym |
|- ( ( D e. ( Met ` X ) /\ ( ( S ` k ) T k ) e. X /\ ( S ` k ) e. X ) -> ( ( ( S ` k ) T k ) D ( S ` k ) ) = ( ( S ` k ) D ( ( S ` k ) T k ) ) ) |
172 |
137 87 41 171
|
syl3anc |
|- ( ( ph /\ k e. NN0 ) -> ( ( ( S ` k ) T k ) D ( S ` k ) ) = ( ( S ` k ) D ( ( S ` k ) T k ) ) ) |
173 |
170 172
|
eqtrd |
|- ( ( ph /\ k e. NN0 ) -> ( ( S ` ( k + 1 ) ) D ( S ` k ) ) = ( ( S ` k ) D ( ( S ` k ) T k ) ) ) |
174 |
|
3cn |
|- 3 e. CC |
175 |
174
|
2timesi |
|- ( 2 x. 3 ) = ( 3 + 3 ) |
176 |
175
|
oveq1i |
|- ( ( 2 x. 3 ) - 3 ) = ( ( 3 + 3 ) - 3 ) |
177 |
174 174
|
pncan3oi |
|- ( ( 3 + 3 ) - 3 ) = 3 |
178 |
|
df-3 |
|- 3 = ( 2 + 1 ) |
179 |
176 177 178
|
3eqtri |
|- ( ( 2 x. 3 ) - 3 ) = ( 2 + 1 ) |
180 |
179
|
oveq1i |
|- ( ( ( 2 x. 3 ) - 3 ) / ( 2 ^ ( k + 1 ) ) ) = ( ( 2 + 1 ) / ( 2 ^ ( k + 1 ) ) ) |
181 |
|
rpcn |
|- ( ( 2 ^ ( k + 1 ) ) e. RR+ -> ( 2 ^ ( k + 1 ) ) e. CC ) |
182 |
|
rpne0 |
|- ( ( 2 ^ ( k + 1 ) ) e. RR+ -> ( 2 ^ ( k + 1 ) ) =/= 0 ) |
183 |
|
2cn |
|- 2 e. CC |
184 |
183 174
|
mulcli |
|- ( 2 x. 3 ) e. CC |
185 |
|
divsubdir |
|- ( ( ( 2 x. 3 ) e. CC /\ 3 e. CC /\ ( ( 2 ^ ( k + 1 ) ) e. CC /\ ( 2 ^ ( k + 1 ) ) =/= 0 ) ) -> ( ( ( 2 x. 3 ) - 3 ) / ( 2 ^ ( k + 1 ) ) ) = ( ( ( 2 x. 3 ) / ( 2 ^ ( k + 1 ) ) ) - ( 3 / ( 2 ^ ( k + 1 ) ) ) ) ) |
186 |
184 174 185
|
mp3an12 |
|- ( ( ( 2 ^ ( k + 1 ) ) e. CC /\ ( 2 ^ ( k + 1 ) ) =/= 0 ) -> ( ( ( 2 x. 3 ) - 3 ) / ( 2 ^ ( k + 1 ) ) ) = ( ( ( 2 x. 3 ) / ( 2 ^ ( k + 1 ) ) ) - ( 3 / ( 2 ^ ( k + 1 ) ) ) ) ) |
187 |
181 182 186
|
syl2anc |
|- ( ( 2 ^ ( k + 1 ) ) e. RR+ -> ( ( ( 2 x. 3 ) - 3 ) / ( 2 ^ ( k + 1 ) ) ) = ( ( ( 2 x. 3 ) / ( 2 ^ ( k + 1 ) ) ) - ( 3 / ( 2 ^ ( k + 1 ) ) ) ) ) |
188 |
46 187
|
syl |
|- ( k e. NN0 -> ( ( ( 2 x. 3 ) - 3 ) / ( 2 ^ ( k + 1 ) ) ) = ( ( ( 2 x. 3 ) / ( 2 ^ ( k + 1 ) ) ) - ( 3 / ( 2 ^ ( k + 1 ) ) ) ) ) |
189 |
|
divdir |
|- ( ( 2 e. CC /\ 1 e. CC /\ ( ( 2 ^ ( k + 1 ) ) e. CC /\ ( 2 ^ ( k + 1 ) ) =/= 0 ) ) -> ( ( 2 + 1 ) / ( 2 ^ ( k + 1 ) ) ) = ( ( 2 / ( 2 ^ ( k + 1 ) ) ) + ( 1 / ( 2 ^ ( k + 1 ) ) ) ) ) |
190 |
183 163 189
|
mp3an12 |
|- ( ( ( 2 ^ ( k + 1 ) ) e. CC /\ ( 2 ^ ( k + 1 ) ) =/= 0 ) -> ( ( 2 + 1 ) / ( 2 ^ ( k + 1 ) ) ) = ( ( 2 / ( 2 ^ ( k + 1 ) ) ) + ( 1 / ( 2 ^ ( k + 1 ) ) ) ) ) |
191 |
181 182 190
|
syl2anc |
|- ( ( 2 ^ ( k + 1 ) ) e. RR+ -> ( ( 2 + 1 ) / ( 2 ^ ( k + 1 ) ) ) = ( ( 2 / ( 2 ^ ( k + 1 ) ) ) + ( 1 / ( 2 ^ ( k + 1 ) ) ) ) ) |
192 |
46 191
|
syl |
|- ( k e. NN0 -> ( ( 2 + 1 ) / ( 2 ^ ( k + 1 ) ) ) = ( ( 2 / ( 2 ^ ( k + 1 ) ) ) + ( 1 / ( 2 ^ ( k + 1 ) ) ) ) ) |
193 |
180 188 192
|
3eqtr3a |
|- ( k e. NN0 -> ( ( ( 2 x. 3 ) / ( 2 ^ ( k + 1 ) ) ) - ( 3 / ( 2 ^ ( k + 1 ) ) ) ) = ( ( 2 / ( 2 ^ ( k + 1 ) ) ) + ( 1 / ( 2 ^ ( k + 1 ) ) ) ) ) |
194 |
|
rpcn |
|- ( ( 2 ^ k ) e. RR+ -> ( 2 ^ k ) e. CC ) |
195 |
|
rpne0 |
|- ( ( 2 ^ k ) e. RR+ -> ( 2 ^ k ) =/= 0 ) |
196 |
|
2cnne0 |
|- ( 2 e. CC /\ 2 =/= 0 ) |
197 |
|
divcan5 |
|- ( ( 3 e. CC /\ ( ( 2 ^ k ) e. CC /\ ( 2 ^ k ) =/= 0 ) /\ ( 2 e. CC /\ 2 =/= 0 ) ) -> ( ( 2 x. 3 ) / ( 2 x. ( 2 ^ k ) ) ) = ( 3 / ( 2 ^ k ) ) ) |
198 |
174 196 197
|
mp3an13 |
|- ( ( ( 2 ^ k ) e. CC /\ ( 2 ^ k ) =/= 0 ) -> ( ( 2 x. 3 ) / ( 2 x. ( 2 ^ k ) ) ) = ( 3 / ( 2 ^ k ) ) ) |
199 |
194 195 198
|
syl2anc |
|- ( ( 2 ^ k ) e. RR+ -> ( ( 2 x. 3 ) / ( 2 x. ( 2 ^ k ) ) ) = ( 3 / ( 2 ^ k ) ) ) |
200 |
52 199
|
syl |
|- ( k e. NN0 -> ( ( 2 x. 3 ) / ( 2 x. ( 2 ^ k ) ) ) = ( 3 / ( 2 ^ k ) ) ) |
201 |
52 194
|
syl |
|- ( k e. NN0 -> ( 2 ^ k ) e. CC ) |
202 |
|
mulcom |
|- ( ( 2 e. CC /\ ( 2 ^ k ) e. CC ) -> ( 2 x. ( 2 ^ k ) ) = ( ( 2 ^ k ) x. 2 ) ) |
203 |
183 201 202
|
sylancr |
|- ( k e. NN0 -> ( 2 x. ( 2 ^ k ) ) = ( ( 2 ^ k ) x. 2 ) ) |
204 |
|
expp1 |
|- ( ( 2 e. CC /\ k e. NN0 ) -> ( 2 ^ ( k + 1 ) ) = ( ( 2 ^ k ) x. 2 ) ) |
205 |
183 204
|
mpan |
|- ( k e. NN0 -> ( 2 ^ ( k + 1 ) ) = ( ( 2 ^ k ) x. 2 ) ) |
206 |
203 205
|
eqtr4d |
|- ( k e. NN0 -> ( 2 x. ( 2 ^ k ) ) = ( 2 ^ ( k + 1 ) ) ) |
207 |
206
|
oveq2d |
|- ( k e. NN0 -> ( ( 2 x. 3 ) / ( 2 x. ( 2 ^ k ) ) ) = ( ( 2 x. 3 ) / ( 2 ^ ( k + 1 ) ) ) ) |
208 |
200 207
|
eqtr3d |
|- ( k e. NN0 -> ( 3 / ( 2 ^ k ) ) = ( ( 2 x. 3 ) / ( 2 ^ ( k + 1 ) ) ) ) |
209 |
208
|
oveq1d |
|- ( k e. NN0 -> ( ( 3 / ( 2 ^ k ) ) - ( 3 / ( 2 ^ ( k + 1 ) ) ) ) = ( ( ( 2 x. 3 ) / ( 2 ^ ( k + 1 ) ) ) - ( 3 / ( 2 ^ ( k + 1 ) ) ) ) ) |
210 |
|
divcan5 |
|- ( ( 1 e. CC /\ ( ( 2 ^ k ) e. CC /\ ( 2 ^ k ) =/= 0 ) /\ ( 2 e. CC /\ 2 =/= 0 ) ) -> ( ( 2 x. 1 ) / ( 2 x. ( 2 ^ k ) ) ) = ( 1 / ( 2 ^ k ) ) ) |
211 |
163 196 210
|
mp3an13 |
|- ( ( ( 2 ^ k ) e. CC /\ ( 2 ^ k ) =/= 0 ) -> ( ( 2 x. 1 ) / ( 2 x. ( 2 ^ k ) ) ) = ( 1 / ( 2 ^ k ) ) ) |
212 |
194 195 211
|
syl2anc |
|- ( ( 2 ^ k ) e. RR+ -> ( ( 2 x. 1 ) / ( 2 x. ( 2 ^ k ) ) ) = ( 1 / ( 2 ^ k ) ) ) |
213 |
52 212
|
syl |
|- ( k e. NN0 -> ( ( 2 x. 1 ) / ( 2 x. ( 2 ^ k ) ) ) = ( 1 / ( 2 ^ k ) ) ) |
214 |
|
2t1e2 |
|- ( 2 x. 1 ) = 2 |
215 |
214
|
a1i |
|- ( k e. NN0 -> ( 2 x. 1 ) = 2 ) |
216 |
215 206
|
oveq12d |
|- ( k e. NN0 -> ( ( 2 x. 1 ) / ( 2 x. ( 2 ^ k ) ) ) = ( 2 / ( 2 ^ ( k + 1 ) ) ) ) |
217 |
213 216
|
eqtr3d |
|- ( k e. NN0 -> ( 1 / ( 2 ^ k ) ) = ( 2 / ( 2 ^ ( k + 1 ) ) ) ) |
218 |
217
|
oveq1d |
|- ( k e. NN0 -> ( ( 1 / ( 2 ^ k ) ) + ( 1 / ( 2 ^ ( k + 1 ) ) ) ) = ( ( 2 / ( 2 ^ ( k + 1 ) ) ) + ( 1 / ( 2 ^ ( k + 1 ) ) ) ) ) |
219 |
193 209 218
|
3eqtr4d |
|- ( k e. NN0 -> ( ( 3 / ( 2 ^ k ) ) - ( 3 / ( 2 ^ ( k + 1 ) ) ) ) = ( ( 1 / ( 2 ^ k ) ) + ( 1 / ( 2 ^ ( k + 1 ) ) ) ) ) |
220 |
219
|
adantl |
|- ( ( ph /\ k e. NN0 ) -> ( ( 3 / ( 2 ^ k ) ) - ( 3 / ( 2 ^ ( k + 1 ) ) ) ) = ( ( 1 / ( 2 ^ k ) ) + ( 1 / ( 2 ^ ( k + 1 ) ) ) ) ) |
221 |
142 173 220
|
3brtr4d |
|- ( ( ph /\ k e. NN0 ) -> ( ( S ` ( k + 1 ) ) D ( S ` k ) ) <_ ( ( 3 / ( 2 ^ k ) ) - ( 3 / ( 2 ^ ( k + 1 ) ) ) ) ) |
222 |
|
blss2 |
|- ( ( ( D e. ( *Met ` X ) /\ ( S ` ( k + 1 ) ) e. X /\ ( S ` k ) e. X ) /\ ( ( 3 / ( 2 ^ ( k + 1 ) ) ) e. RR /\ ( 3 / ( 2 ^ k ) ) e. RR /\ ( ( S ` ( k + 1 ) ) D ( S ` k ) ) <_ ( ( 3 / ( 2 ^ k ) ) - ( 3 / ( 2 ^ ( k + 1 ) ) ) ) ) ) -> ( ( S ` ( k + 1 ) ) ( ball ` D ) ( 3 / ( 2 ^ ( k + 1 ) ) ) ) C_ ( ( S ` k ) ( ball ` D ) ( 3 / ( 2 ^ k ) ) ) ) |
223 |
17 32 41 49 55 221 222
|
syl33anc |
|- ( ( ph /\ k e. NN0 ) -> ( ( S ` ( k + 1 ) ) ( ball ` D ) ( 3 / ( 2 ^ ( k + 1 ) ) ) ) C_ ( ( S ` k ) ( ball ` D ) ( 3 / ( 2 ^ k ) ) ) ) |
224 |
12 223
|
sylan2 |
|- ( ( ph /\ k e. NN ) -> ( ( S ` ( k + 1 ) ) ( ball ` D ) ( 3 / ( 2 ^ ( k + 1 ) ) ) ) C_ ( ( S ` k ) ( ball ` D ) ( 3 / ( 2 ^ k ) ) ) ) |
225 |
|
peano2nn |
|- ( k e. NN -> ( k + 1 ) e. NN ) |
226 |
|
fveq2 |
|- ( n = ( k + 1 ) -> ( S ` n ) = ( S ` ( k + 1 ) ) ) |
227 |
|
oveq2 |
|- ( n = ( k + 1 ) -> ( 2 ^ n ) = ( 2 ^ ( k + 1 ) ) ) |
228 |
227
|
oveq2d |
|- ( n = ( k + 1 ) -> ( 3 / ( 2 ^ n ) ) = ( 3 / ( 2 ^ ( k + 1 ) ) ) ) |
229 |
226 228
|
opeq12d |
|- ( n = ( k + 1 ) -> <. ( S ` n ) , ( 3 / ( 2 ^ n ) ) >. = <. ( S ` ( k + 1 ) ) , ( 3 / ( 2 ^ ( k + 1 ) ) ) >. ) |
230 |
|
opex |
|- <. ( S ` ( k + 1 ) ) , ( 3 / ( 2 ^ ( k + 1 ) ) ) >. e. _V |
231 |
229 11 230
|
fvmpt |
|- ( ( k + 1 ) e. NN -> ( M ` ( k + 1 ) ) = <. ( S ` ( k + 1 ) ) , ( 3 / ( 2 ^ ( k + 1 ) ) ) >. ) |
232 |
225 231
|
syl |
|- ( k e. NN -> ( M ` ( k + 1 ) ) = <. ( S ` ( k + 1 ) ) , ( 3 / ( 2 ^ ( k + 1 ) ) ) >. ) |
233 |
232
|
adantl |
|- ( ( ph /\ k e. NN ) -> ( M ` ( k + 1 ) ) = <. ( S ` ( k + 1 ) ) , ( 3 / ( 2 ^ ( k + 1 ) ) ) >. ) |
234 |
233
|
fveq2d |
|- ( ( ph /\ k e. NN ) -> ( ( ball ` D ) ` ( M ` ( k + 1 ) ) ) = ( ( ball ` D ) ` <. ( S ` ( k + 1 ) ) , ( 3 / ( 2 ^ ( k + 1 ) ) ) >. ) ) |
235 |
|
df-ov |
|- ( ( S ` ( k + 1 ) ) ( ball ` D ) ( 3 / ( 2 ^ ( k + 1 ) ) ) ) = ( ( ball ` D ) ` <. ( S ` ( k + 1 ) ) , ( 3 / ( 2 ^ ( k + 1 ) ) ) >. ) |
236 |
234 235
|
eqtr4di |
|- ( ( ph /\ k e. NN ) -> ( ( ball ` D ) ` ( M ` ( k + 1 ) ) ) = ( ( S ` ( k + 1 ) ) ( ball ` D ) ( 3 / ( 2 ^ ( k + 1 ) ) ) ) ) |
237 |
|
fveq2 |
|- ( n = k -> ( S ` n ) = ( S ` k ) ) |
238 |
|
oveq2 |
|- ( n = k -> ( 2 ^ n ) = ( 2 ^ k ) ) |
239 |
238
|
oveq2d |
|- ( n = k -> ( 3 / ( 2 ^ n ) ) = ( 3 / ( 2 ^ k ) ) ) |
240 |
237 239
|
opeq12d |
|- ( n = k -> <. ( S ` n ) , ( 3 / ( 2 ^ n ) ) >. = <. ( S ` k ) , ( 3 / ( 2 ^ k ) ) >. ) |
241 |
|
opex |
|- <. ( S ` k ) , ( 3 / ( 2 ^ k ) ) >. e. _V |
242 |
240 11 241
|
fvmpt |
|- ( k e. NN -> ( M ` k ) = <. ( S ` k ) , ( 3 / ( 2 ^ k ) ) >. ) |
243 |
242
|
fveq2d |
|- ( k e. NN -> ( ( ball ` D ) ` ( M ` k ) ) = ( ( ball ` D ) ` <. ( S ` k ) , ( 3 / ( 2 ^ k ) ) >. ) ) |
244 |
|
df-ov |
|- ( ( S ` k ) ( ball ` D ) ( 3 / ( 2 ^ k ) ) ) = ( ( ball ` D ) ` <. ( S ` k ) , ( 3 / ( 2 ^ k ) ) >. ) |
245 |
243 244
|
eqtr4di |
|- ( k e. NN -> ( ( ball ` D ) ` ( M ` k ) ) = ( ( S ` k ) ( ball ` D ) ( 3 / ( 2 ^ k ) ) ) ) |
246 |
245
|
adantl |
|- ( ( ph /\ k e. NN ) -> ( ( ball ` D ) ` ( M ` k ) ) = ( ( S ` k ) ( ball ` D ) ( 3 / ( 2 ^ k ) ) ) ) |
247 |
224 236 246
|
3sstr4d |
|- ( ( ph /\ k e. NN ) -> ( ( ball ` D ) ` ( M ` ( k + 1 ) ) ) C_ ( ( ball ` D ) ` ( M ` k ) ) ) |
248 |
247
|
ralrimiva |
|- ( ph -> A. k e. NN ( ( ball ` D ) ` ( M ` ( k + 1 ) ) ) C_ ( ( ball ` D ) ` ( M ` k ) ) ) |