Metamath Proof Explorer


Theorem 01sqrexlem6

Description: Lemma for 01sqrex . (Contributed by Mario Carneiro, 10-Jul-2013)

Ref Expression
Hypotheses 01sqrexlem1.1 S=x+|x2A
01sqrexlem1.2 B=supS<
01sqrexlem5.3 T=y|aSbSy=ab
Assertion 01sqrexlem6 A+A1B2A

Proof

Step Hyp Ref Expression
1 01sqrexlem1.1 S=x+|x2A
2 01sqrexlem1.2 B=supS<
3 01sqrexlem5.3 T=y|aSbSy=ab
4 1 2 3 01sqrexlem5 A+A1TTvuTuvB2=supT<
5 4 simprd A+A1B2=supT<
6 vex vV
7 eqeq1 y=vy=abv=ab
8 7 2rexbidv y=vaSbSy=abaSbSv=ab
9 6 8 3 elab2 vTaSbSv=ab
10 oveq1 x=ax2=a2
11 10 breq1d x=ax2Aa2A
12 11 1 elrab2 aSa+a2A
13 12 simplbi aSa+
14 oveq1 x=bx2=b2
15 14 breq1d x=bx2Ab2A
16 15 1 elrab2 bSb+b2A
17 16 simplbi bSb+
18 rpre a+a
19 18 adantr a+b+a
20 rpre b+b
21 20 adantl a+b+b
22 rpgt0 b+0<b
23 22 adantl a+b+0<b
24 lemul1 abb0<bababbb
25 19 21 21 23 24 syl112anc a+b+ababbb
26 13 17 25 syl2an aSbSababbb
27 17 rpcnd bSb
28 27 sqvald bSb2=bb
29 28 breq2d bSabb2abbb
30 29 adantl aSbSabb2abbb
31 26 30 bitr4d aSbSababb2
32 31 adantl A+A1aSbSababb2
33 16 simprbi bSb2A
34 33 ad2antll A+A1aSbSb2A
35 13 rpred aSa
36 17 rpred bSb
37 remulcl abab
38 35 36 37 syl2an aSbSab
39 38 adantl A+A1aSbSab
40 36 resqcld bSb2
41 40 ad2antll A+A1aSbSb2
42 rpre A+A
43 42 ad2antrr A+A1aSbSA
44 letr abb2Aabb2b2AabA
45 39 41 43 44 syl3anc A+A1aSbSabb2b2AabA
46 34 45 mpan2d A+A1aSbSabb2abA
47 32 46 sylbid A+A1aSbSababA
48 rpgt0 a+0<a
49 48 adantr a+b+0<a
50 lemul2 baa0<abaabaa
51 21 19 19 49 50 syl112anc a+b+baabaa
52 13 17 51 syl2an aSbSbaabaa
53 13 rpcnd aSa
54 53 sqvald aSa2=aa
55 54 breq2d aSaba2abaa
56 55 adantr aSbSaba2abaa
57 52 56 bitr4d aSbSbaaba2
58 57 adantl A+A1aSbSbaaba2
59 12 simprbi aSa2A
60 59 ad2antrl A+A1aSbSa2A
61 35 resqcld aSa2
62 61 ad2antrl A+A1aSbSa2
63 letr aba2Aaba2a2AabA
64 39 62 43 63 syl3anc A+A1aSbSaba2a2AabA
65 60 64 mpan2d A+A1aSbSaba2abA
66 58 65 sylbid A+A1aSbSbaabA
67 1 2 01sqrexlem3 A+A1SSyvSvy
68 67 simp1d A+A1S
69 68 sseld A+A1aSa
70 68 sseld A+A1bSb
71 69 70 anim12d A+A1aSbSab
72 71 imp A+A1aSbSab
73 letric ababba
74 72 73 syl A+A1aSbSabba
75 47 66 74 mpjaod A+A1aSbSabA
76 75 ex A+A1aSbSabA
77 breq1 v=abvAabA
78 77 biimprcd abAv=abvA
79 76 78 syl6 A+A1aSbSv=abvA
80 79 rexlimdvv A+A1aSbSv=abvA
81 9 80 biimtrid A+A1vTvA
82 81 ralrimiv A+A1vTvA
83 4 simpld A+A1TTvuTuv
84 42 adantr A+A1A
85 suprleub TTvuTuvAsupT<AvTvA
86 83 84 85 syl2anc A+A1supT<AvTvA
87 82 86 mpbird A+A1supT<A
88 5 87 eqbrtrd A+A1B2A