Database
REAL AND COMPLEX NUMBERS
Elementary real and complex functions
Square root; absolute value
01sqrexlem6
Next ⟩
01sqrexlem7
Metamath Proof Explorer
Ascii
Unicode
Theorem
01sqrexlem6
Description:
Lemma for
01sqrex
.
(Contributed by
Mario Carneiro
, 10-Jul-2013)
Ref
Expression
Hypotheses
01sqrexlem1.1
⊢
S
=
x
∈
ℝ
+
|
x
2
≤
A
01sqrexlem1.2
⊢
B
=
sup
S
ℝ
<
01sqrexlem5.3
⊢
T
=
y
|
∃
a
∈
S
∃
b
∈
S
y
=
a
b
Assertion
01sqrexlem6
⊢
A
∈
ℝ
+
∧
A
≤
1
→
B
2
≤
A
Proof
Step
Hyp
Ref
Expression
1
01sqrexlem1.1
⊢
S
=
x
∈
ℝ
+
|
x
2
≤
A
2
01sqrexlem1.2
⊢
B
=
sup
S
ℝ
<
3
01sqrexlem5.3
⊢
T
=
y
|
∃
a
∈
S
∃
b
∈
S
y
=
a
b
4
1
2
3
01sqrexlem5
⊢
A
∈
ℝ
+
∧
A
≤
1
→
T
⊆
ℝ
∧
T
≠
∅
∧
∃
v
∈
ℝ
∀
u
∈
T
u
≤
v
∧
B
2
=
sup
T
ℝ
<
5
4
simprd
⊢
A
∈
ℝ
+
∧
A
≤
1
→
B
2
=
sup
T
ℝ
<
6
vex
⊢
v
∈
V
7
eqeq1
⊢
y
=
v
→
y
=
a
b
↔
v
=
a
b
8
7
2rexbidv
⊢
y
=
v
→
∃
a
∈
S
∃
b
∈
S
y
=
a
b
↔
∃
a
∈
S
∃
b
∈
S
v
=
a
b
9
6
8
3
elab2
⊢
v
∈
T
↔
∃
a
∈
S
∃
b
∈
S
v
=
a
b
10
oveq1
⊢
x
=
a
→
x
2
=
a
2
11
10
breq1d
⊢
x
=
a
→
x
2
≤
A
↔
a
2
≤
A
12
11
1
elrab2
⊢
a
∈
S
↔
a
∈
ℝ
+
∧
a
2
≤
A
13
12
simplbi
⊢
a
∈
S
→
a
∈
ℝ
+
14
oveq1
⊢
x
=
b
→
x
2
=
b
2
15
14
breq1d
⊢
x
=
b
→
x
2
≤
A
↔
b
2
≤
A
16
15
1
elrab2
⊢
b
∈
S
↔
b
∈
ℝ
+
∧
b
2
≤
A
17
16
simplbi
⊢
b
∈
S
→
b
∈
ℝ
+
18
rpre
⊢
a
∈
ℝ
+
→
a
∈
ℝ
19
18
adantr
⊢
a
∈
ℝ
+
∧
b
∈
ℝ
+
→
a
∈
ℝ
20
rpre
⊢
b
∈
ℝ
+
→
b
∈
ℝ
21
20
adantl
⊢
a
∈
ℝ
+
∧
b
∈
ℝ
+
→
b
∈
ℝ
22
rpgt0
⊢
b
∈
ℝ
+
→
0
<
b
23
22
adantl
⊢
a
∈
ℝ
+
∧
b
∈
ℝ
+
→
0
<
b
24
lemul1
⊢
a
∈
ℝ
∧
b
∈
ℝ
∧
b
∈
ℝ
∧
0
<
b
→
a
≤
b
↔
a
b
≤
b
b
25
19
21
21
23
24
syl112anc
⊢
a
∈
ℝ
+
∧
b
∈
ℝ
+
→
a
≤
b
↔
a
b
≤
b
b
26
13
17
25
syl2an
⊢
a
∈
S
∧
b
∈
S
→
a
≤
b
↔
a
b
≤
b
b
27
17
rpcnd
⊢
b
∈
S
→
b
∈
ℂ
28
27
sqvald
⊢
b
∈
S
→
b
2
=
b
b
29
28
breq2d
⊢
b
∈
S
→
a
b
≤
b
2
↔
a
b
≤
b
b
30
29
adantl
⊢
a
∈
S
∧
b
∈
S
→
a
b
≤
b
2
↔
a
b
≤
b
b
31
26
30
bitr4d
⊢
a
∈
S
∧
b
∈
S
→
a
≤
b
↔
a
b
≤
b
2
32
31
adantl
⊢
A
∈
ℝ
+
∧
A
≤
1
∧
a
∈
S
∧
b
∈
S
→
a
≤
b
↔
a
b
≤
b
2
33
16
simprbi
⊢
b
∈
S
→
b
2
≤
A
34
33
ad2antll
⊢
A
∈
ℝ
+
∧
A
≤
1
∧
a
∈
S
∧
b
∈
S
→
b
2
≤
A
35
13
rpred
⊢
a
∈
S
→
a
∈
ℝ
36
17
rpred
⊢
b
∈
S
→
b
∈
ℝ
37
remulcl
⊢
a
∈
ℝ
∧
b
∈
ℝ
→
a
b
∈
ℝ
38
35
36
37
syl2an
⊢
a
∈
S
∧
b
∈
S
→
a
b
∈
ℝ
39
38
adantl
⊢
A
∈
ℝ
+
∧
A
≤
1
∧
a
∈
S
∧
b
∈
S
→
a
b
∈
ℝ
40
36
resqcld
⊢
b
∈
S
→
b
2
∈
ℝ
41
40
ad2antll
⊢
A
∈
ℝ
+
∧
A
≤
1
∧
a
∈
S
∧
b
∈
S
→
b
2
∈
ℝ
42
rpre
⊢
A
∈
ℝ
+
→
A
∈
ℝ
43
42
ad2antrr
⊢
A
∈
ℝ
+
∧
A
≤
1
∧
a
∈
S
∧
b
∈
S
→
A
∈
ℝ
44
letr
⊢
a
b
∈
ℝ
∧
b
2
∈
ℝ
∧
A
∈
ℝ
→
a
b
≤
b
2
∧
b
2
≤
A
→
a
b
≤
A
45
39
41
43
44
syl3anc
⊢
A
∈
ℝ
+
∧
A
≤
1
∧
a
∈
S
∧
b
∈
S
→
a
b
≤
b
2
∧
b
2
≤
A
→
a
b
≤
A
46
34
45
mpan2d
⊢
A
∈
ℝ
+
∧
A
≤
1
∧
a
∈
S
∧
b
∈
S
→
a
b
≤
b
2
→
a
b
≤
A
47
32
46
sylbid
⊢
A
∈
ℝ
+
∧
A
≤
1
∧
a
∈
S
∧
b
∈
S
→
a
≤
b
→
a
b
≤
A
48
rpgt0
⊢
a
∈
ℝ
+
→
0
<
a
49
48
adantr
⊢
a
∈
ℝ
+
∧
b
∈
ℝ
+
→
0
<
a
50
lemul2
⊢
b
∈
ℝ
∧
a
∈
ℝ
∧
a
∈
ℝ
∧
0
<
a
→
b
≤
a
↔
a
b
≤
a
a
51
21
19
19
49
50
syl112anc
⊢
a
∈
ℝ
+
∧
b
∈
ℝ
+
→
b
≤
a
↔
a
b
≤
a
a
52
13
17
51
syl2an
⊢
a
∈
S
∧
b
∈
S
→
b
≤
a
↔
a
b
≤
a
a
53
13
rpcnd
⊢
a
∈
S
→
a
∈
ℂ
54
53
sqvald
⊢
a
∈
S
→
a
2
=
a
a
55
54
breq2d
⊢
a
∈
S
→
a
b
≤
a
2
↔
a
b
≤
a
a
56
55
adantr
⊢
a
∈
S
∧
b
∈
S
→
a
b
≤
a
2
↔
a
b
≤
a
a
57
52
56
bitr4d
⊢
a
∈
S
∧
b
∈
S
→
b
≤
a
↔
a
b
≤
a
2
58
57
adantl
⊢
A
∈
ℝ
+
∧
A
≤
1
∧
a
∈
S
∧
b
∈
S
→
b
≤
a
↔
a
b
≤
a
2
59
12
simprbi
⊢
a
∈
S
→
a
2
≤
A
60
59
ad2antrl
⊢
A
∈
ℝ
+
∧
A
≤
1
∧
a
∈
S
∧
b
∈
S
→
a
2
≤
A
61
35
resqcld
⊢
a
∈
S
→
a
2
∈
ℝ
62
61
ad2antrl
⊢
A
∈
ℝ
+
∧
A
≤
1
∧
a
∈
S
∧
b
∈
S
→
a
2
∈
ℝ
63
letr
⊢
a
b
∈
ℝ
∧
a
2
∈
ℝ
∧
A
∈
ℝ
→
a
b
≤
a
2
∧
a
2
≤
A
→
a
b
≤
A
64
39
62
43
63
syl3anc
⊢
A
∈
ℝ
+
∧
A
≤
1
∧
a
∈
S
∧
b
∈
S
→
a
b
≤
a
2
∧
a
2
≤
A
→
a
b
≤
A
65
60
64
mpan2d
⊢
A
∈
ℝ
+
∧
A
≤
1
∧
a
∈
S
∧
b
∈
S
→
a
b
≤
a
2
→
a
b
≤
A
66
58
65
sylbid
⊢
A
∈
ℝ
+
∧
A
≤
1
∧
a
∈
S
∧
b
∈
S
→
b
≤
a
→
a
b
≤
A
67
1
2
01sqrexlem3
⊢
A
∈
ℝ
+
∧
A
≤
1
→
S
⊆
ℝ
∧
S
≠
∅
∧
∃
y
∈
ℝ
∀
v
∈
S
v
≤
y
68
67
simp1d
⊢
A
∈
ℝ
+
∧
A
≤
1
→
S
⊆
ℝ
69
68
sseld
⊢
A
∈
ℝ
+
∧
A
≤
1
→
a
∈
S
→
a
∈
ℝ
70
68
sseld
⊢
A
∈
ℝ
+
∧
A
≤
1
→
b
∈
S
→
b
∈
ℝ
71
69
70
anim12d
⊢
A
∈
ℝ
+
∧
A
≤
1
→
a
∈
S
∧
b
∈
S
→
a
∈
ℝ
∧
b
∈
ℝ
72
71
imp
⊢
A
∈
ℝ
+
∧
A
≤
1
∧
a
∈
S
∧
b
∈
S
→
a
∈
ℝ
∧
b
∈
ℝ
73
letric
⊢
a
∈
ℝ
∧
b
∈
ℝ
→
a
≤
b
∨
b
≤
a
74
72
73
syl
⊢
A
∈
ℝ
+
∧
A
≤
1
∧
a
∈
S
∧
b
∈
S
→
a
≤
b
∨
b
≤
a
75
47
66
74
mpjaod
⊢
A
∈
ℝ
+
∧
A
≤
1
∧
a
∈
S
∧
b
∈
S
→
a
b
≤
A
76
75
ex
⊢
A
∈
ℝ
+
∧
A
≤
1
→
a
∈
S
∧
b
∈
S
→
a
b
≤
A
77
breq1
⊢
v
=
a
b
→
v
≤
A
↔
a
b
≤
A
78
77
biimprcd
⊢
a
b
≤
A
→
v
=
a
b
→
v
≤
A
79
76
78
syl6
⊢
A
∈
ℝ
+
∧
A
≤
1
→
a
∈
S
∧
b
∈
S
→
v
=
a
b
→
v
≤
A
80
79
rexlimdvv
⊢
A
∈
ℝ
+
∧
A
≤
1
→
∃
a
∈
S
∃
b
∈
S
v
=
a
b
→
v
≤
A
81
9
80
biimtrid
⊢
A
∈
ℝ
+
∧
A
≤
1
→
v
∈
T
→
v
≤
A
82
81
ralrimiv
⊢
A
∈
ℝ
+
∧
A
≤
1
→
∀
v
∈
T
v
≤
A
83
4
simpld
⊢
A
∈
ℝ
+
∧
A
≤
1
→
T
⊆
ℝ
∧
T
≠
∅
∧
∃
v
∈
ℝ
∀
u
∈
T
u
≤
v
84
42
adantr
⊢
A
∈
ℝ
+
∧
A
≤
1
→
A
∈
ℝ
85
suprleub
⊢
T
⊆
ℝ
∧
T
≠
∅
∧
∃
v
∈
ℝ
∀
u
∈
T
u
≤
v
∧
A
∈
ℝ
→
sup
T
ℝ
<
≤
A
↔
∀
v
∈
T
v
≤
A
86
83
84
85
syl2anc
⊢
A
∈
ℝ
+
∧
A
≤
1
→
sup
T
ℝ
<
≤
A
↔
∀
v
∈
T
v
≤
A
87
82
86
mpbird
⊢
A
∈
ℝ
+
∧
A
≤
1
→
sup
T
ℝ
<
≤
A
88
5
87
eqbrtrd
⊢
A
∈
ℝ
+
∧
A
≤
1
→
B
2
≤
A