Metamath Proof Explorer


Theorem 2ap1caineq

Description: Inequality for Theorem 6.6 for AKS. (Contributed by metakunt, 8-Jun-2024)

Ref Expression
Hypotheses 2ap1caineq.1 φN
2ap1caineq.2 φ2N
Assertion 2ap1caineq φ2N+1<(2 N+1N)

Proof

Step Hyp Ref Expression
1 2ap1caineq.1 φN
2 2ap1caineq.2 φ2N
3 oveq1 j=2j+1=2+1
4 3 oveq2d j=22j+1=22+1
5 oveq2 j=22j=22
6 5 oveq1d j=22j+1=22+1
7 id j=2j=2
8 6 7 oveq12d j=2(2j+1j)=(22+12)
9 4 8 breq12d j=22j+1<(2j+1j)22+1<(22+12)
10 oveq1 j=kj+1=k+1
11 10 oveq2d j=k2j+1=2k+1
12 oveq2 j=k2j=2k
13 12 oveq1d j=k2j+1=2k+1
14 id j=kj=k
15 13 14 oveq12d j=k(2j+1j)=(2k+1k)
16 11 15 breq12d j=k2j+1<(2j+1j)2k+1<(2k+1k)
17 oveq1 j=k+1j+1=k+1+1
18 17 oveq2d j=k+12j+1=2k+1+1
19 oveq2 j=k+12j=2k+1
20 19 oveq1d j=k+12j+1=2k+1+1
21 id j=k+1j=k+1
22 20 21 oveq12d j=k+1(2j+1j)=(2k+1+1k+1)
23 18 22 breq12d j=k+12j+1<(2j+1j)2k+1+1<(2k+1+1k+1)
24 oveq1 j=Nj+1=N+1
25 24 oveq2d j=N2j+1=2N+1
26 oveq2 j=N2j=2 N
27 26 oveq1d j=N2j+1=2 N+1
28 id j=Nj=N
29 27 28 oveq12d j=N(2j+1j)=(2 N+1N)
30 25 29 breq12d j=N2j+1<(2j+1j)2N+1<(2 N+1N)
31 8lt10 8<10
32 eqid 8=8
33 cu2 23=8
34 32 33 eqtr4i 8=23
35 5bc2eq10 (52)=10
36 35 eqcomi 10=(52)
37 34 36 breq12i 8<1023<(52)
38 31 37 mpbi 23<(52)
39 df-3 3=2+1
40 39 oveq2i 23=22+1
41 eqid 5=5
42 2t2e4 22=4
43 42 oveq1i 22+1=4+1
44 4p1e5 4+1=5
45 43 44 eqtri 22+1=5
46 41 45 eqtr4i 5=22+1
47 46 oveq1i (52)=(22+12)
48 40 47 breq12i 23<(52)22+1<(22+12)
49 38 48 mpbi 22+1<(22+12)
50 49 a1i φ22+1<(22+12)
51 2re 2
52 51 a1i φ2k+1<(2k+1k)k2k2
53 simpl k2kk
54 0red k2k0
55 51 a1i k2k2
56 53 zred k2kk
57 2pos 0<2
58 57 a1i k2k0<2
59 simpr k2k2k
60 54 55 56 58 59 ltletrd k2k0<k
61 53 60 jca k2kk0<k
62 elnnz kk0<k
63 61 62 sylibr k2kk
64 nnnn0 kk0
65 63 64 syl k2kk0
66 65 nn0red k2kk
67 54 55 66 58 59 ltletrd k2k0<k
68 53 67 jca k2kk0<k
69 68 62 sylibr k2kk
70 69 nnred k2kk
71 70 3ad2ant3 φ2k+1<(2k+1k)k2kk
72 52 71 remulcld φ2k+1<(2k+1k)k2k2k
73 3re 3
74 73 a1i φ2k+1<(2k+1k)k2k3
75 72 74 readdcld φ2k+1<(2k+1k)k2k2k+3
76 71 52 readdcld φ2k+1<(2k+1k)k2kk+2
77 70 55 readdcld k2kk+2
78 69 nngt0d k2k0<k
79 2rp 2+
80 79 a1i k2k2+
81 70 80 ltaddrpd k2kk<k+2
82 54 70 77 78 81 lttrd k2k0<k+2
83 54 82 ltned k2k0k+2
84 83 necomd k2kk+20
85 84 3ad2ant3 φ2k+1<(2k+1k)k2kk+20
86 75 76 85 redivcld φ2k+1<(2k+1k)k2k2k+3k+2
87 52 86 remulcld φ2k+1<(2k+1k)k2k22k+3k+2
88 1nn0 10
89 88 a1i k2k10
90 65 89 nn0addcld k2kk+10
91 55 90 reexpcld k2k2k+1
92 91 3ad2ant3 φ2k+1<(2k+1k)k2k2k+1
93 2nn0 20
94 93 a1i k2k20
95 94 65 nn0mulcld k2k2k0
96 95 89 nn0addcld k2k2k+10
97 bccl 2k+10k(2k+1k)0
98 96 53 97 syl2anc k2k(2k+1k)0
99 98 nn0red k2k(2k+1k)
100 99 3ad2ant3 φ2k+1<(2k+1k)k2k(2k+1k)
101 0le2 02
102 101 a1i φ2k+1<(2k+1k)k2k02
103 eqid 2=2
104 2t1e2 21=2
105 103 104 eqtr4i 2=21
106 105 a1i k2k2=21
107 1red k2k1
108 55 70 remulcld k2k2k
109 73 a1i k2k3
110 108 109 readdcld k2k2k+3
111 110 77 84 redivcld k2k2k+3k+2
112 nnrp kk+
113 79 a1i k2+
114 112 113 rpaddcld kk+2+
115 114 rpcnd kk+2
116 115 mulridd kk+21=k+2
117 nnre kk
118 51 a1i k2
119 118 117 remulcld k2k
120 73 a1i k3
121 112 rpge0d k0k
122 1le2 12
123 122 a1i k12
124 117 118 121 123 lemulge12d kk2k
125 2lt3 2<3
126 125 a1i k2<3
127 117 118 119 120 124 126 leltaddd kk+2<2k+3
128 116 127 eqbrtrd kk+21<2k+3
129 1red k1
130 119 120 readdcld k2k+3
131 129 130 114 ltmuldiv2d kk+21<2k+31<2k+3k+2
132 128 131 mpbid k1<2k+3k+2
133 69 132 syl k2k1<2k+3k+2
134 107 111 80 133 ltmul2dd k2k21<22k+3k+2
135 106 134 eqbrtrd k2k2<22k+3k+2
136 135 3ad2ant3 φ2k+1<(2k+1k)k2k2<22k+3k+2
137 101 a1i k2k02
138 55 90 137 expge0d k2k02k+1
139 138 3ad2ant3 φ2k+1<(2k+1k)k2k02k+1
140 simp2 φ2k+1<(2k+1k)k2k2k+1<(2k+1k)
141 52 87 92 100 102 136 139 140 ltmul12ad φ2k+1<(2k+1k)k2k22k+1<22k+3k+2(2k+1k)
142 2cnd k2k2
143 142 89 90 expaddd k2k2k+1+1=2k+121
144 142 90 expcld k2k2k+1
145 142 89 expcld k2k21
146 144 145 mulcomd k2k2k+121=212k+1
147 142 exp1d k2k21=2
148 147 oveq1d k2k212k+1=22k+1
149 eqidd k2k22k+1=22k+1
150 146 148 149 3eqtrd k2k2k+121=22k+1
151 143 150 eqtrd k2k2k+1+1=22k+1
152 151 eqcomd k2k22k+1=2k+1+1
153 152 3ad2ant3 φ2k+1<(2k+1k)k2k22k+1=2k+1+1
154 65 2np3bcnp1 k2k(2k+1+1k+1)=(2k+1k)22k+3k+2
155 98 nn0cnd k2k(2k+1k)
156 69 nncnd k2kk
157 142 156 mulcld k2k2k
158 3cn 3
159 158 a1i k2k3
160 157 159 addcld k2k2k+3
161 156 142 addcld k2kk+2
162 160 161 84 divcld k2k2k+3k+2
163 142 162 mulcld k2k22k+3k+2
164 155 163 mulcomd k2k(2k+1k)22k+3k+2=22k+3k+2(2k+1k)
165 154 164 eqtrd k2k(2k+1+1k+1)=22k+3k+2(2k+1k)
166 165 eqcomd k2k22k+3k+2(2k+1k)=(2k+1+1k+1)
167 166 3ad2ant3 φ2k+1<(2k+1k)k2k22k+3k+2(2k+1k)=(2k+1+1k+1)
168 153 167 breq12d φ2k+1<(2k+1k)k2k22k+1<22k+3k+2(2k+1k)2k+1+1<(2k+1+1k+1)
169 141 168 mpbid φ2k+1<(2k+1k)k2k2k+1+1<(2k+1+1k+1)
170 2z 2
171 170 a1i φ2
172 9 16 23 30 50 169 171 1 2 uzindd φ2N+1<(2 N+1N)