Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for metakunt
Miscellaneous results for AKS formalisation
2ap1caineq
Next ⟩
Sticks and stones
Metamath Proof Explorer
Ascii
Unicode
Theorem
2ap1caineq
Description:
Inequality for Theorem 6.6 for AKS.
(Contributed by
metakunt
, 8-Jun-2024)
Ref
Expression
Hypotheses
2ap1caineq.1
⊢
φ
→
N
∈
ℤ
2ap1caineq.2
⊢
φ
→
2
≤
N
Assertion
2ap1caineq
⊢
φ
→
2
N
+
1
<
(
2
⋅
N
+
1
N
)
Proof
Step
Hyp
Ref
Expression
1
2ap1caineq.1
⊢
φ
→
N
∈
ℤ
2
2ap1caineq.2
⊢
φ
→
2
≤
N
3
oveq1
⊢
j
=
2
→
j
+
1
=
2
+
1
4
3
oveq2d
⊢
j
=
2
→
2
j
+
1
=
2
2
+
1
5
oveq2
⊢
j
=
2
→
2
j
=
2
⋅
2
6
5
oveq1d
⊢
j
=
2
→
2
j
+
1
=
2
⋅
2
+
1
7
id
⊢
j
=
2
→
j
=
2
8
6
7
oveq12d
⊢
j
=
2
→
(
2
j
+
1
j
)
=
(
2
⋅
2
+
1
2
)
9
4
8
breq12d
⊢
j
=
2
→
2
j
+
1
<
(
2
j
+
1
j
)
↔
2
2
+
1
<
(
2
⋅
2
+
1
2
)
10
oveq1
⊢
j
=
k
→
j
+
1
=
k
+
1
11
10
oveq2d
⊢
j
=
k
→
2
j
+
1
=
2
k
+
1
12
oveq2
⊢
j
=
k
→
2
j
=
2
k
13
12
oveq1d
⊢
j
=
k
→
2
j
+
1
=
2
k
+
1
14
id
⊢
j
=
k
→
j
=
k
15
13
14
oveq12d
⊢
j
=
k
→
(
2
j
+
1
j
)
=
(
2
k
+
1
k
)
16
11
15
breq12d
⊢
j
=
k
→
2
j
+
1
<
(
2
j
+
1
j
)
↔
2
k
+
1
<
(
2
k
+
1
k
)
17
oveq1
⊢
j
=
k
+
1
→
j
+
1
=
k
+
1
+
1
18
17
oveq2d
⊢
j
=
k
+
1
→
2
j
+
1
=
2
k
+
1
+
1
19
oveq2
⊢
j
=
k
+
1
→
2
j
=
2
k
+
1
20
19
oveq1d
⊢
j
=
k
+
1
→
2
j
+
1
=
2
k
+
1
+
1
21
id
⊢
j
=
k
+
1
→
j
=
k
+
1
22
20
21
oveq12d
⊢
j
=
k
+
1
→
(
2
j
+
1
j
)
=
(
2
k
+
1
+
1
k
+
1
)
23
18
22
breq12d
⊢
j
=
k
+
1
→
2
j
+
1
<
(
2
j
+
1
j
)
↔
2
k
+
1
+
1
<
(
2
k
+
1
+
1
k
+
1
)
24
oveq1
⊢
j
=
N
→
j
+
1
=
N
+
1
25
24
oveq2d
⊢
j
=
N
→
2
j
+
1
=
2
N
+
1
26
oveq2
⊢
j
=
N
→
2
j
=
2
⋅
N
27
26
oveq1d
⊢
j
=
N
→
2
j
+
1
=
2
⋅
N
+
1
28
id
⊢
j
=
N
→
j
=
N
29
27
28
oveq12d
⊢
j
=
N
→
(
2
j
+
1
j
)
=
(
2
⋅
N
+
1
N
)
30
25
29
breq12d
⊢
j
=
N
→
2
j
+
1
<
(
2
j
+
1
j
)
↔
2
N
+
1
<
(
2
⋅
N
+
1
N
)
31
8lt10
⊢
8
<
10
32
eqid
⊢
8
=
8
33
cu2
⊢
2
3
=
8
34
32
33
eqtr4i
⊢
8
=
2
3
35
5bc2eq10
⊢
(
5
2
)
=
10
36
35
eqcomi
⊢
10
=
(
5
2
)
37
34
36
breq12i
⊢
8
<
10
↔
2
3
<
(
5
2
)
38
31
37
mpbi
⊢
2
3
<
(
5
2
)
39
df-3
⊢
3
=
2
+
1
40
39
oveq2i
⊢
2
3
=
2
2
+
1
41
eqid
⊢
5
=
5
42
2t2e4
⊢
2
⋅
2
=
4
43
42
oveq1i
⊢
2
⋅
2
+
1
=
4
+
1
44
4p1e5
⊢
4
+
1
=
5
45
43
44
eqtri
⊢
2
⋅
2
+
1
=
5
46
41
45
eqtr4i
⊢
5
=
2
⋅
2
+
1
47
46
oveq1i
⊢
(
5
2
)
=
(
2
⋅
2
+
1
2
)
48
40
47
breq12i
⊢
2
3
<
(
5
2
)
↔
2
2
+
1
<
(
2
⋅
2
+
1
2
)
49
38
48
mpbi
⊢
2
2
+
1
<
(
2
⋅
2
+
1
2
)
50
49
a1i
⊢
φ
→
2
2
+
1
<
(
2
⋅
2
+
1
2
)
51
2re
⊢
2
∈
ℝ
52
51
a1i
⊢
φ
∧
2
k
+
1
<
(
2
k
+
1
k
)
∧
k
∈
ℤ
∧
2
≤
k
→
2
∈
ℝ
53
simpl
⊢
k
∈
ℤ
∧
2
≤
k
→
k
∈
ℤ
54
0red
⊢
k
∈
ℤ
∧
2
≤
k
→
0
∈
ℝ
55
51
a1i
⊢
k
∈
ℤ
∧
2
≤
k
→
2
∈
ℝ
56
53
zred
⊢
k
∈
ℤ
∧
2
≤
k
→
k
∈
ℝ
57
2pos
⊢
0
<
2
58
57
a1i
⊢
k
∈
ℤ
∧
2
≤
k
→
0
<
2
59
simpr
⊢
k
∈
ℤ
∧
2
≤
k
→
2
≤
k
60
54
55
56
58
59
ltletrd
⊢
k
∈
ℤ
∧
2
≤
k
→
0
<
k
61
53
60
jca
⊢
k
∈
ℤ
∧
2
≤
k
→
k
∈
ℤ
∧
0
<
k
62
elnnz
⊢
k
∈
ℕ
↔
k
∈
ℤ
∧
0
<
k
63
61
62
sylibr
⊢
k
∈
ℤ
∧
2
≤
k
→
k
∈
ℕ
64
nnnn0
⊢
k
∈
ℕ
→
k
∈
ℕ
0
65
63
64
syl
⊢
k
∈
ℤ
∧
2
≤
k
→
k
∈
ℕ
0
66
65
nn0red
⊢
k
∈
ℤ
∧
2
≤
k
→
k
∈
ℝ
67
54
55
66
58
59
ltletrd
⊢
k
∈
ℤ
∧
2
≤
k
→
0
<
k
68
53
67
jca
⊢
k
∈
ℤ
∧
2
≤
k
→
k
∈
ℤ
∧
0
<
k
69
68
62
sylibr
⊢
k
∈
ℤ
∧
2
≤
k
→
k
∈
ℕ
70
69
nnred
⊢
k
∈
ℤ
∧
2
≤
k
→
k
∈
ℝ
71
70
3ad2ant3
⊢
φ
∧
2
k
+
1
<
(
2
k
+
1
k
)
∧
k
∈
ℤ
∧
2
≤
k
→
k
∈
ℝ
72
52
71
remulcld
⊢
φ
∧
2
k
+
1
<
(
2
k
+
1
k
)
∧
k
∈
ℤ
∧
2
≤
k
→
2
k
∈
ℝ
73
3re
⊢
3
∈
ℝ
74
73
a1i
⊢
φ
∧
2
k
+
1
<
(
2
k
+
1
k
)
∧
k
∈
ℤ
∧
2
≤
k
→
3
∈
ℝ
75
72
74
readdcld
⊢
φ
∧
2
k
+
1
<
(
2
k
+
1
k
)
∧
k
∈
ℤ
∧
2
≤
k
→
2
k
+
3
∈
ℝ
76
71
52
readdcld
⊢
φ
∧
2
k
+
1
<
(
2
k
+
1
k
)
∧
k
∈
ℤ
∧
2
≤
k
→
k
+
2
∈
ℝ
77
70
55
readdcld
⊢
k
∈
ℤ
∧
2
≤
k
→
k
+
2
∈
ℝ
78
69
nngt0d
⊢
k
∈
ℤ
∧
2
≤
k
→
0
<
k
79
2rp
⊢
2
∈
ℝ
+
80
79
a1i
⊢
k
∈
ℤ
∧
2
≤
k
→
2
∈
ℝ
+
81
70
80
ltaddrpd
⊢
k
∈
ℤ
∧
2
≤
k
→
k
<
k
+
2
82
54
70
77
78
81
lttrd
⊢
k
∈
ℤ
∧
2
≤
k
→
0
<
k
+
2
83
54
82
ltned
⊢
k
∈
ℤ
∧
2
≤
k
→
0
≠
k
+
2
84
83
necomd
⊢
k
∈
ℤ
∧
2
≤
k
→
k
+
2
≠
0
85
84
3ad2ant3
⊢
φ
∧
2
k
+
1
<
(
2
k
+
1
k
)
∧
k
∈
ℤ
∧
2
≤
k
→
k
+
2
≠
0
86
75
76
85
redivcld
⊢
φ
∧
2
k
+
1
<
(
2
k
+
1
k
)
∧
k
∈
ℤ
∧
2
≤
k
→
2
k
+
3
k
+
2
∈
ℝ
87
52
86
remulcld
⊢
φ
∧
2
k
+
1
<
(
2
k
+
1
k
)
∧
k
∈
ℤ
∧
2
≤
k
→
2
2
k
+
3
k
+
2
∈
ℝ
88
1nn0
⊢
1
∈
ℕ
0
89
88
a1i
⊢
k
∈
ℤ
∧
2
≤
k
→
1
∈
ℕ
0
90
65
89
nn0addcld
⊢
k
∈
ℤ
∧
2
≤
k
→
k
+
1
∈
ℕ
0
91
55
90
reexpcld
⊢
k
∈
ℤ
∧
2
≤
k
→
2
k
+
1
∈
ℝ
92
91
3ad2ant3
⊢
φ
∧
2
k
+
1
<
(
2
k
+
1
k
)
∧
k
∈
ℤ
∧
2
≤
k
→
2
k
+
1
∈
ℝ
93
2nn0
⊢
2
∈
ℕ
0
94
93
a1i
⊢
k
∈
ℤ
∧
2
≤
k
→
2
∈
ℕ
0
95
94
65
nn0mulcld
⊢
k
∈
ℤ
∧
2
≤
k
→
2
k
∈
ℕ
0
96
95
89
nn0addcld
⊢
k
∈
ℤ
∧
2
≤
k
→
2
k
+
1
∈
ℕ
0
97
bccl
⊢
2
k
+
1
∈
ℕ
0
∧
k
∈
ℤ
→
(
2
k
+
1
k
)
∈
ℕ
0
98
96
53
97
syl2anc
⊢
k
∈
ℤ
∧
2
≤
k
→
(
2
k
+
1
k
)
∈
ℕ
0
99
98
nn0red
⊢
k
∈
ℤ
∧
2
≤
k
→
(
2
k
+
1
k
)
∈
ℝ
100
99
3ad2ant3
⊢
φ
∧
2
k
+
1
<
(
2
k
+
1
k
)
∧
k
∈
ℤ
∧
2
≤
k
→
(
2
k
+
1
k
)
∈
ℝ
101
0le2
⊢
0
≤
2
102
101
a1i
⊢
φ
∧
2
k
+
1
<
(
2
k
+
1
k
)
∧
k
∈
ℤ
∧
2
≤
k
→
0
≤
2
103
eqid
⊢
2
=
2
104
2t1e2
⊢
2
⋅
1
=
2
105
103
104
eqtr4i
⊢
2
=
2
⋅
1
106
105
a1i
⊢
k
∈
ℤ
∧
2
≤
k
→
2
=
2
⋅
1
107
1red
⊢
k
∈
ℤ
∧
2
≤
k
→
1
∈
ℝ
108
55
70
remulcld
⊢
k
∈
ℤ
∧
2
≤
k
→
2
k
∈
ℝ
109
73
a1i
⊢
k
∈
ℤ
∧
2
≤
k
→
3
∈
ℝ
110
108
109
readdcld
⊢
k
∈
ℤ
∧
2
≤
k
→
2
k
+
3
∈
ℝ
111
110
77
84
redivcld
⊢
k
∈
ℤ
∧
2
≤
k
→
2
k
+
3
k
+
2
∈
ℝ
112
nnrp
⊢
k
∈
ℕ
→
k
∈
ℝ
+
113
79
a1i
⊢
k
∈
ℕ
→
2
∈
ℝ
+
114
112
113
rpaddcld
⊢
k
∈
ℕ
→
k
+
2
∈
ℝ
+
115
114
rpcnd
⊢
k
∈
ℕ
→
k
+
2
∈
ℂ
116
115
mulridd
⊢
k
∈
ℕ
→
k
+
2
⋅
1
=
k
+
2
117
nnre
⊢
k
∈
ℕ
→
k
∈
ℝ
118
51
a1i
⊢
k
∈
ℕ
→
2
∈
ℝ
119
118
117
remulcld
⊢
k
∈
ℕ
→
2
k
∈
ℝ
120
73
a1i
⊢
k
∈
ℕ
→
3
∈
ℝ
121
112
rpge0d
⊢
k
∈
ℕ
→
0
≤
k
122
1le2
⊢
1
≤
2
123
122
a1i
⊢
k
∈
ℕ
→
1
≤
2
124
117
118
121
123
lemulge12d
⊢
k
∈
ℕ
→
k
≤
2
k
125
2lt3
⊢
2
<
3
126
125
a1i
⊢
k
∈
ℕ
→
2
<
3
127
117
118
119
120
124
126
leltaddd
⊢
k
∈
ℕ
→
k
+
2
<
2
k
+
3
128
116
127
eqbrtrd
⊢
k
∈
ℕ
→
k
+
2
⋅
1
<
2
k
+
3
129
1red
⊢
k
∈
ℕ
→
1
∈
ℝ
130
119
120
readdcld
⊢
k
∈
ℕ
→
2
k
+
3
∈
ℝ
131
129
130
114
ltmuldiv2d
⊢
k
∈
ℕ
→
k
+
2
⋅
1
<
2
k
+
3
↔
1
<
2
k
+
3
k
+
2
132
128
131
mpbid
⊢
k
∈
ℕ
→
1
<
2
k
+
3
k
+
2
133
69
132
syl
⊢
k
∈
ℤ
∧
2
≤
k
→
1
<
2
k
+
3
k
+
2
134
107
111
80
133
ltmul2dd
⊢
k
∈
ℤ
∧
2
≤
k
→
2
⋅
1
<
2
2
k
+
3
k
+
2
135
106
134
eqbrtrd
⊢
k
∈
ℤ
∧
2
≤
k
→
2
<
2
2
k
+
3
k
+
2
136
135
3ad2ant3
⊢
φ
∧
2
k
+
1
<
(
2
k
+
1
k
)
∧
k
∈
ℤ
∧
2
≤
k
→
2
<
2
2
k
+
3
k
+
2
137
101
a1i
⊢
k
∈
ℤ
∧
2
≤
k
→
0
≤
2
138
55
90
137
expge0d
⊢
k
∈
ℤ
∧
2
≤
k
→
0
≤
2
k
+
1
139
138
3ad2ant3
⊢
φ
∧
2
k
+
1
<
(
2
k
+
1
k
)
∧
k
∈
ℤ
∧
2
≤
k
→
0
≤
2
k
+
1
140
simp2
⊢
φ
∧
2
k
+
1
<
(
2
k
+
1
k
)
∧
k
∈
ℤ
∧
2
≤
k
→
2
k
+
1
<
(
2
k
+
1
k
)
141
52
87
92
100
102
136
139
140
ltmul12ad
⊢
φ
∧
2
k
+
1
<
(
2
k
+
1
k
)
∧
k
∈
ℤ
∧
2
≤
k
→
2
2
k
+
1
<
2
2
k
+
3
k
+
2
(
2
k
+
1
k
)
142
2cnd
⊢
k
∈
ℤ
∧
2
≤
k
→
2
∈
ℂ
143
142
89
90
expaddd
⊢
k
∈
ℤ
∧
2
≤
k
→
2
k
+
1
+
1
=
2
k
+
1
2
1
144
142
90
expcld
⊢
k
∈
ℤ
∧
2
≤
k
→
2
k
+
1
∈
ℂ
145
142
89
expcld
⊢
k
∈
ℤ
∧
2
≤
k
→
2
1
∈
ℂ
146
144
145
mulcomd
⊢
k
∈
ℤ
∧
2
≤
k
→
2
k
+
1
2
1
=
2
1
2
k
+
1
147
142
exp1d
⊢
k
∈
ℤ
∧
2
≤
k
→
2
1
=
2
148
147
oveq1d
⊢
k
∈
ℤ
∧
2
≤
k
→
2
1
2
k
+
1
=
2
2
k
+
1
149
eqidd
⊢
k
∈
ℤ
∧
2
≤
k
→
2
2
k
+
1
=
2
2
k
+
1
150
146
148
149
3eqtrd
⊢
k
∈
ℤ
∧
2
≤
k
→
2
k
+
1
2
1
=
2
2
k
+
1
151
143
150
eqtrd
⊢
k
∈
ℤ
∧
2
≤
k
→
2
k
+
1
+
1
=
2
2
k
+
1
152
151
eqcomd
⊢
k
∈
ℤ
∧
2
≤
k
→
2
2
k
+
1
=
2
k
+
1
+
1
153
152
3ad2ant3
⊢
φ
∧
2
k
+
1
<
(
2
k
+
1
k
)
∧
k
∈
ℤ
∧
2
≤
k
→
2
2
k
+
1
=
2
k
+
1
+
1
154
65
2np3bcnp1
⊢
k
∈
ℤ
∧
2
≤
k
→
(
2
k
+
1
+
1
k
+
1
)
=
(
2
k
+
1
k
)
2
2
k
+
3
k
+
2
155
98
nn0cnd
⊢
k
∈
ℤ
∧
2
≤
k
→
(
2
k
+
1
k
)
∈
ℂ
156
69
nncnd
⊢
k
∈
ℤ
∧
2
≤
k
→
k
∈
ℂ
157
142
156
mulcld
⊢
k
∈
ℤ
∧
2
≤
k
→
2
k
∈
ℂ
158
3cn
⊢
3
∈
ℂ
159
158
a1i
⊢
k
∈
ℤ
∧
2
≤
k
→
3
∈
ℂ
160
157
159
addcld
⊢
k
∈
ℤ
∧
2
≤
k
→
2
k
+
3
∈
ℂ
161
156
142
addcld
⊢
k
∈
ℤ
∧
2
≤
k
→
k
+
2
∈
ℂ
162
160
161
84
divcld
⊢
k
∈
ℤ
∧
2
≤
k
→
2
k
+
3
k
+
2
∈
ℂ
163
142
162
mulcld
⊢
k
∈
ℤ
∧
2
≤
k
→
2
2
k
+
3
k
+
2
∈
ℂ
164
155
163
mulcomd
⊢
k
∈
ℤ
∧
2
≤
k
→
(
2
k
+
1
k
)
2
2
k
+
3
k
+
2
=
2
2
k
+
3
k
+
2
(
2
k
+
1
k
)
165
154
164
eqtrd
⊢
k
∈
ℤ
∧
2
≤
k
→
(
2
k
+
1
+
1
k
+
1
)
=
2
2
k
+
3
k
+
2
(
2
k
+
1
k
)
166
165
eqcomd
⊢
k
∈
ℤ
∧
2
≤
k
→
2
2
k
+
3
k
+
2
(
2
k
+
1
k
)
=
(
2
k
+
1
+
1
k
+
1
)
167
166
3ad2ant3
⊢
φ
∧
2
k
+
1
<
(
2
k
+
1
k
)
∧
k
∈
ℤ
∧
2
≤
k
→
2
2
k
+
3
k
+
2
(
2
k
+
1
k
)
=
(
2
k
+
1
+
1
k
+
1
)
168
153
167
breq12d
⊢
φ
∧
2
k
+
1
<
(
2
k
+
1
k
)
∧
k
∈
ℤ
∧
2
≤
k
→
2
2
k
+
1
<
2
2
k
+
3
k
+
2
(
2
k
+
1
k
)
↔
2
k
+
1
+
1
<
(
2
k
+
1
+
1
k
+
1
)
169
141
168
mpbid
⊢
φ
∧
2
k
+
1
<
(
2
k
+
1
k
)
∧
k
∈
ℤ
∧
2
≤
k
→
2
k
+
1
+
1
<
(
2
k
+
1
+
1
k
+
1
)
170
2z
⊢
2
∈
ℤ
171
170
a1i
⊢
φ
→
2
∈
ℤ
172
9
16
23
30
50
169
171
1
2
uzindd
⊢
φ
→
2
N
+
1
<
(
2
⋅
N
+
1
N
)