| Step | Hyp | Ref | Expression | 
						
							| 1 |  | abelth.1 |  | 
						
							| 2 |  | abelth.2 |  | 
						
							| 3 |  | abelth.3 |  | 
						
							| 4 |  | abelth.4 |  | 
						
							| 5 |  | abelth.5 |  | 
						
							| 6 |  | abelth.6 |  | 
						
							| 7 |  | abelth.7 |  | 
						
							| 8 |  | nn0uz |  | 
						
							| 9 |  | 0zd |  | 
						
							| 10 |  | 1rp |  | 
						
							| 11 | 10 | a1i |  | 
						
							| 12 |  | eqidd |  | 
						
							| 13 | 8 9 11 12 7 | climi0 |  | 
						
							| 14 | 13 | adantr |  | 
						
							| 15 |  | simprl |  | 
						
							| 16 |  | oveq2 |  | 
						
							| 17 |  | eqid |  | 
						
							| 18 |  | ovex |  | 
						
							| 19 | 16 17 18 | fvmpt |  | 
						
							| 20 | 19 | adantl |  | 
						
							| 21 |  | cnxmet |  | 
						
							| 22 |  | 0cn |  | 
						
							| 23 |  | 1xr |  | 
						
							| 24 |  | blssm |  | 
						
							| 25 | 21 22 23 24 | mp3an |  | 
						
							| 26 |  | simplr |  | 
						
							| 27 | 25 26 | sselid |  | 
						
							| 28 | 27 | abscld |  | 
						
							| 29 |  | reexpcl |  | 
						
							| 30 | 28 29 | sylan |  | 
						
							| 31 | 20 30 | eqeltrd |  | 
						
							| 32 |  | fveq2 |  | 
						
							| 33 |  | oveq2 |  | 
						
							| 34 | 32 33 | oveq12d |  | 
						
							| 35 |  | eqid |  | 
						
							| 36 |  | ovex |  | 
						
							| 37 | 34 35 36 | fvmpt |  | 
						
							| 38 | 37 | adantl |  | 
						
							| 39 | 1 | ffvelcdmda |  | 
						
							| 40 | 8 9 39 | serf |  | 
						
							| 41 | 40 | ad2antrr |  | 
						
							| 42 | 41 | ffvelcdmda |  | 
						
							| 43 |  | expcl |  | 
						
							| 44 | 27 43 | sylan |  | 
						
							| 45 | 42 44 | mulcld |  | 
						
							| 46 | 38 45 | eqeltrd |  | 
						
							| 47 | 28 | recnd |  | 
						
							| 48 |  | absidm |  | 
						
							| 49 | 27 48 | syl |  | 
						
							| 50 |  | eqid |  | 
						
							| 51 | 50 | cnmetdval |  | 
						
							| 52 | 27 22 51 | sylancl |  | 
						
							| 53 | 27 | subid1d |  | 
						
							| 54 | 53 | fveq2d |  | 
						
							| 55 | 52 54 | eqtrd |  | 
						
							| 56 |  | elbl3 |  | 
						
							| 57 | 21 23 56 | mpanl12 |  | 
						
							| 58 | 22 27 57 | sylancr |  | 
						
							| 59 | 26 58 | mpbid |  | 
						
							| 60 | 55 59 | eqbrtrrd |  | 
						
							| 61 | 49 60 | eqbrtrd |  | 
						
							| 62 | 47 61 20 | geolim |  | 
						
							| 63 |  | climrel |  | 
						
							| 64 | 63 | releldmi |  | 
						
							| 65 | 62 64 | syl |  | 
						
							| 66 |  | 1red |  | 
						
							| 67 | 41 | adantr |  | 
						
							| 68 |  | eluznn0 |  | 
						
							| 69 | 15 68 | sylan |  | 
						
							| 70 | 67 69 | ffvelcdmd |  | 
						
							| 71 | 69 44 | syldan |  | 
						
							| 72 | 70 71 | absmuld |  | 
						
							| 73 | 27 | adantr |  | 
						
							| 74 | 73 69 | absexpd |  | 
						
							| 75 | 74 | oveq2d |  | 
						
							| 76 | 72 75 | eqtrd |  | 
						
							| 77 | 70 | abscld |  | 
						
							| 78 |  | 1red |  | 
						
							| 79 | 69 30 | syldan |  | 
						
							| 80 | 71 | absge0d |  | 
						
							| 81 | 80 74 | breqtrd |  | 
						
							| 82 |  | simprr |  | 
						
							| 83 |  | 2fveq3 |  | 
						
							| 84 | 83 | breq1d |  | 
						
							| 85 | 84 | rspccva |  | 
						
							| 86 | 82 85 | sylan |  | 
						
							| 87 |  | 1re |  | 
						
							| 88 |  | ltle |  | 
						
							| 89 | 77 87 88 | sylancl |  | 
						
							| 90 | 86 89 | mpd |  | 
						
							| 91 | 77 78 79 81 90 | lemul1ad |  | 
						
							| 92 | 76 91 | eqbrtrd |  | 
						
							| 93 | 69 37 | syl |  | 
						
							| 94 | 93 | fveq2d |  | 
						
							| 95 | 69 19 | syl |  | 
						
							| 96 | 95 | oveq2d |  | 
						
							| 97 | 92 94 96 | 3brtr4d |  | 
						
							| 98 | 8 15 31 46 65 66 97 | cvgcmpce |  | 
						
							| 99 | 14 98 | rexlimddv |  |