Metamath Proof Explorer


Theorem aks4d1p8d2

Description: Any prime power dividing a positive integer is less than that integer if that integer has another prime factor. (Contributed by metakunt, 13-Nov-2024)

Ref Expression
Hypotheses aks4d1p8d2.1 φR
aks4d1p8d2.2 φN
aks4d1p8d2.3 φP
aks4d1p8d2.4 φQ
aks4d1p8d2.5 φPR
aks4d1p8d2.6 φQR
aks4d1p8d2.7 φ¬PN
aks4d1p8d2.8 φQN
Assertion aks4d1p8d2 φPPpCntR<R

Proof

Step Hyp Ref Expression
1 aks4d1p8d2.1 φR
2 aks4d1p8d2.2 φN
3 aks4d1p8d2.3 φP
4 aks4d1p8d2.4 φQ
5 aks4d1p8d2.5 φPR
6 aks4d1p8d2.6 φQR
7 aks4d1p8d2.7 φ¬PN
8 aks4d1p8d2.8 φQN
9 prmnn PP
10 3 9 syl φP
11 10 nnred φP
12 3 1 pccld φPpCntR0
13 11 12 reexpcld φPPpCntR
14 prmnn QQ
15 4 14 syl φQ
16 15 nnred φQ
17 13 16 remulcld φPPpCntRQ
18 1 nnred φR
19 13 recnd φPPpCntR
20 19 mulridd φPPpCntR1=PPpCntR
21 1red φ1
22 10 nnrpd φP+
23 12 nn0zd φPpCntR
24 22 23 rpexpcld φPPpCntR+
25 prmgt1 Q1<Q
26 4 25 syl φ1<Q
27 21 16 24 26 ltmul2dd φPPpCntR1<PPpCntRQ
28 20 27 eqbrtrrd φPPpCntR<PPpCntRQ
29 10 nnzd φP
30 29 12 zexpcld φPPpCntR
31 15 nnzd φQ
32 1 nnzd φR
33 30 31 gcdcomd φPPpCntRgcdQ=QgcdPPpCntR
34 0lt1 0<1
35 34 a1i φ0<1
36 0red φ0
37 36 21 ltnled φ0<1¬10
38 35 37 mpbid φ¬10
39 16 recnd φQ
40 39 exp1d φQ1=Q
41 40 eqcomd φQ=Q1
42 41 oveq2d φQpCntQ=QpCntQ1
43 1zzd φ1
44 pcid Q1QpCntQ1=1
45 4 43 44 syl2anc φQpCntQ1=1
46 42 45 eqtrd φQpCntQ=1
47 8 adantr φP=QQN
48 breq1 P=QPNQN
49 48 adantl φP=QPNQN
50 49 bicomd φP=QQNPN
51 50 biimpd φP=QQNPN
52 47 51 mpd φP=QPN
53 7 adantr φP=Q¬PN
54 52 53 pm2.65da φ¬P=Q
55 54 neqcomd φ¬Q=P
56 pcelnn PRPpCntRPR
57 3 1 56 syl2anc φPpCntRPR
58 5 57 mpbird φPpCntR
59 prmdvdsexpb QPPpCntRQPPpCntRQ=P
60 4 3 58 59 syl3anc φQPPpCntRQ=P
61 60 notbid φ¬QPPpCntR¬Q=P
62 55 61 mpbird φ¬QPPpCntR
63 10 12 nnexpcld φPPpCntR
64 pceq0 QPPpCntRQpCntPPpCntR=0¬QPPpCntR
65 4 63 64 syl2anc φQpCntPPpCntR=0¬QPPpCntR
66 62 65 mpbird φQpCntPPpCntR=0
67 46 66 breq12d φQpCntQQpCntPPpCntR10
68 67 notbid φ¬QpCntQQpCntPPpCntR¬10
69 38 68 mpbird φ¬QpCntQQpCntPPpCntR
70 69 adantr φp=Q¬QpCntQQpCntPPpCntR
71 simpr φp=Qp=Q
72 71 oveq1d φp=QppCntQ=QpCntQ
73 71 oveq1d φp=QppCntPPpCntR=QpCntPPpCntR
74 72 73 breq12d φp=QppCntQppCntPPpCntRQpCntQQpCntPPpCntR
75 74 notbid φp=Q¬ppCntQppCntPPpCntR¬QpCntQQpCntPPpCntR
76 70 75 mpbird φp=Q¬ppCntQppCntPPpCntR
77 76 4 rspcime φp¬ppCntQppCntPPpCntR
78 rexnal p¬ppCntQppCntPPpCntR¬pppCntQppCntPPpCntR
79 78 a1i φp¬ppCntQppCntPPpCntR¬pppCntQppCntPPpCntR
80 77 79 mpbid φ¬pppCntQppCntPPpCntR
81 pc2dvds QPPpCntRQPPpCntRpppCntQppCntPPpCntR
82 31 30 81 syl2anc φQPPpCntRpppCntQppCntPPpCntR
83 82 notbid φ¬QPPpCntR¬pppCntQppCntPPpCntR
84 80 83 mpbird φ¬QPPpCntR
85 coprm QPPpCntR¬QPPpCntRQgcdPPpCntR=1
86 4 30 85 syl2anc φ¬QPPpCntRQgcdPPpCntR=1
87 84 86 mpbid φQgcdPPpCntR=1
88 33 87 eqtrd φPPpCntRgcdQ=1
89 pcdvds PRPPpCntRR
90 3 1 89 syl2anc φPPpCntRR
91 30 31 32 88 90 6 coprmdvds2d φPPpCntRQR
92 30 31 zmulcld φPPpCntRQ
93 dvdsle PPpCntRQRPPpCntRQRPPpCntRQR
94 92 1 93 syl2anc φPPpCntRQRPPpCntRQR
95 91 94 mpd φPPpCntRQR
96 13 17 18 28 95 ltletrd φPPpCntR<R