Metamath Proof Explorer


Theorem axlowdimlem6

Description: Lemma for axlowdim . Show that three points are non-colinear. (Contributed by Scott Fenton, 29-Jun-2013)

Ref Expression
Hypotheses axlowdimlem6.1 A=10203N×0
axlowdimlem6.2 B=11203N×0
axlowdimlem6.3 C=10213N×0
Assertion axlowdimlem6 N2¬ABtwnBCBBtwnCACBtwnAB

Proof

Step Hyp Ref Expression
1 axlowdimlem6.1 A=10203N×0
2 axlowdimlem6.2 B=11203N×0
3 axlowdimlem6.3 C=10213N×0
4 1zzd N21
5 eluzelz N2N
6 2nn 2
7 uznnssnn 22
8 6 7 ax-mp 2
9 nnuz =1
10 8 9 sseqtri 21
11 10 sseli N2N1
12 eluzle N11N
13 11 12 syl N21N
14 1re 1
15 14 leidi 11
16 13 15 jctil N2111N
17 elfz4 1N1111N11N
18 4 5 4 16 17 syl31anc N211N
19 eluzel2 N22
20 eluzle N22N
21 1le2 12
22 20 21 jctil N2122N
23 elfz4 1N2122N21N
24 4 5 19 22 23 syl31anc N221N
25 ax-1ne0 10
26 1t1e1 11=1
27 0cn 0
28 27 mul01i 00=0
29 26 28 neeq12i 110010
30 25 29 mpbir 1100
31 fveq2 i=111203N×0i=11203N×01
32 0re 0
33 14 32 axlowdimlem4 1120:12
34 ffn 1120:121120Fn12
35 33 34 ax-mp 1120Fn12
36 axlowdimlem1 3N×0:3N
37 ffn 3N×0:3N3N×0Fn3N
38 36 37 ax-mp 3N×0Fn3N
39 axlowdimlem2 123N=
40 1z 1
41 2z 2
42 40 41 40 3pm3.2i 121
43 15 21 pm3.2i 1112
44 elfz4 1211112112
45 42 43 44 mp2an 112
46 39 45 pm3.2i 123N=112
47 fvun1 1120Fn123N×0Fn3N123N=11211203N×01=11201
48 35 38 46 47 mp3an 11203N×01=11201
49 1ne2 12
50 1ex 1V
51 50 50 fvpr1 1211201=1
52 49 51 ax-mp 11201=1
53 48 52 eqtri 11203N×01=1
54 31 53 eqtrdi i=111203N×0i=1
55 fveq2 i=110203N×0i=10203N×01
56 32 32 axlowdimlem4 1020:12
57 ffn 1020:121020Fn12
58 56 57 ax-mp 1020Fn12
59 fvun1 1020Fn123N×0Fn3N123N=11210203N×01=10201
60 58 38 46 59 mp3an 10203N×01=10201
61 32 elexi 0V
62 50 61 fvpr1 1210201=0
63 49 62 ax-mp 10201=0
64 60 63 eqtri 10203N×01=0
65 55 64 eqtrdi i=110203N×0i=0
66 54 65 oveq12d i=111203N×0i10203N×0i=10
67 1m0e1 10=1
68 66 67 eqtrdi i=111203N×0i10203N×0i=1
69 68 oveq1d i=111203N×0i10203N×0i10213N×0j10203N×0j=110213N×0j10203N×0j
70 fveq2 i=110213N×0i=10213N×01
71 32 14 axlowdimlem4 1021:12
72 ffn 1021:121021Fn12
73 71 72 ax-mp 1021Fn12
74 fvun1 1021Fn123N×0Fn3N123N=11210213N×01=10211
75 73 38 46 74 mp3an 10213N×01=10211
76 50 61 fvpr1 1210211=0
77 49 76 ax-mp 10211=0
78 75 77 eqtri 10213N×01=0
79 70 78 eqtrdi i=110213N×0i=0
80 79 65 oveq12d i=110213N×0i10203N×0i=00
81 0m0e0 00=0
82 80 81 eqtrdi i=110213N×0i10203N×0i=0
83 82 oveq2d i=111203N×0j10203N×0j10213N×0i10203N×0i=11203N×0j10203N×0j0
84 69 83 neeq12d i=111203N×0i10203N×0i10213N×0j10203N×0j11203N×0j10203N×0j10213N×0i10203N×0i110213N×0j10203N×0j11203N×0j10203N×0j0
85 fveq2 j=210213N×0j=10213N×02
86 40 41 41 3pm3.2i 122
87 2re 2
88 87 leidi 22
89 21 88 pm3.2i 1222
90 elfz4 1221222212
91 86 89 90 mp2an 212
92 39 91 pm3.2i 123N=212
93 fvun1 1021Fn123N×0Fn3N123N=21210213N×02=10212
94 73 38 92 93 mp3an 10213N×02=10212
95 41 elexi 2V
96 95 50 fvpr2 1210212=1
97 49 96 ax-mp 10212=1
98 94 97 eqtri 10213N×02=1
99 85 98 eqtrdi j=210213N×0j=1
100 fveq2 j=210203N×0j=10203N×02
101 fvun1 1020Fn123N×0Fn3N123N=21210203N×02=10202
102 58 38 92 101 mp3an 10203N×02=10202
103 95 61 fvpr2 1210202=0
104 49 103 ax-mp 10202=0
105 102 104 eqtri 10203N×02=0
106 100 105 eqtrdi j=210203N×0j=0
107 99 106 oveq12d j=210213N×0j10203N×0j=10
108 107 67 eqtrdi j=210213N×0j10203N×0j=1
109 108 oveq2d j=2110213N×0j10203N×0j=11
110 fveq2 j=211203N×0j=11203N×02
111 fvun1 1120Fn123N×0Fn3N123N=21211203N×02=11202
112 35 38 92 111 mp3an 11203N×02=11202
113 95 61 fvpr2 1211202=0
114 49 113 ax-mp 11202=0
115 112 114 eqtri 11203N×02=0
116 110 115 eqtrdi j=211203N×0j=0
117 116 106 oveq12d j=211203N×0j10203N×0j=00
118 117 81 eqtrdi j=211203N×0j10203N×0j=0
119 118 oveq1d j=211203N×0j10203N×0j0=00
120 109 119 neeq12d j=2110213N×0j10203N×0j11203N×0j10203N×0j01100
121 84 120 rspc2ev 11N21N1100i1Nj1N11203N×0i10203N×0i10213N×0j10203N×0j11203N×0j10203N×0j10213N×0i10203N×0i
122 30 121 mp3an3 11N21Ni1Nj1N11203N×0i10203N×0i10213N×0j10203N×0j11203N×0j10203N×0j10213N×0i10203N×0i
123 18 24 122 syl2anc N2i1Nj1N11203N×0i10203N×0i10213N×0j10203N×0j11203N×0j10203N×0j10213N×0i10203N×0i
124 df-ne 11203N×0i10203N×0i10213N×0j10203N×0j11203N×0j10203N×0j10213N×0i10203N×0i¬11203N×0i10203N×0i10213N×0j10203N×0j=11203N×0j10203N×0j10213N×0i10203N×0i
125 124 rexbii j1N11203N×0i10203N×0i10213N×0j10203N×0j11203N×0j10203N×0j10213N×0i10203N×0ij1N¬11203N×0i10203N×0i10213N×0j10203N×0j=11203N×0j10203N×0j10213N×0i10203N×0i
126 rexnal j1N¬11203N×0i10203N×0i10213N×0j10203N×0j=11203N×0j10203N×0j10213N×0i10203N×0i¬j1N11203N×0i10203N×0i10213N×0j10203N×0j=11203N×0j10203N×0j10213N×0i10203N×0i
127 125 126 bitri j1N11203N×0i10203N×0i10213N×0j10203N×0j11203N×0j10203N×0j10213N×0i10203N×0i¬j1N11203N×0i10203N×0i10213N×0j10203N×0j=11203N×0j10203N×0j10213N×0i10203N×0i
128 127 rexbii i1Nj1N11203N×0i10203N×0i10213N×0j10203N×0j11203N×0j10203N×0j10213N×0i10203N×0ii1N¬j1N11203N×0i10203N×0i10213N×0j10203N×0j=11203N×0j10203N×0j10213N×0i10203N×0i
129 rexnal i1N¬j1N11203N×0i10203N×0i10213N×0j10203N×0j=11203N×0j10203N×0j10213N×0i10203N×0i¬i1Nj1N11203N×0i10203N×0i10213N×0j10203N×0j=11203N×0j10203N×0j10213N×0i10203N×0i
130 128 129 bitri i1Nj1N11203N×0i10203N×0i10213N×0j10203N×0j11203N×0j10203N×0j10213N×0i10203N×0i¬i1Nj1N11203N×0i10203N×0i10213N×0j10203N×0j=11203N×0j10203N×0j10213N×0i10203N×0i
131 123 130 sylib N2¬i1Nj1N11203N×0i10203N×0i10213N×0j10203N×0j=11203N×0j10203N×0j10213N×0i10203N×0i
132 32 32 axlowdimlem5 N210203N×0𝔼N
133 14 32 axlowdimlem5 N211203N×0𝔼N
134 32 14 axlowdimlem5 N210213N×0𝔼N
135 colinearalg 10203N×0𝔼N11203N×0𝔼N10213N×0𝔼N10203N×0Btwn11203N×010213N×011203N×0Btwn10213N×010203N×010213N×0Btwn10203N×011203N×0i1Nj1N11203N×0i10203N×0i10213N×0j10203N×0j=11203N×0j10203N×0j10213N×0i10203N×0i
136 132 133 134 135 syl3anc N210203N×0Btwn11203N×010213N×011203N×0Btwn10213N×010203N×010213N×0Btwn10203N×011203N×0i1Nj1N11203N×0i10203N×0i10213N×0j10203N×0j=11203N×0j10203N×0j10213N×0i10203N×0i
137 131 136 mtbird N2¬10203N×0Btwn11203N×010213N×011203N×0Btwn10213N×010203N×010213N×0Btwn10203N×011203N×0
138 2 3 opeq12i BC=11203N×010213N×0
139 1 138 breq12i ABtwnBC10203N×0Btwn11203N×010213N×0
140 3 1 opeq12i CA=10213N×010203N×0
141 2 140 breq12i BBtwnCA11203N×0Btwn10213N×010203N×0
142 1 2 opeq12i AB=10203N×011203N×0
143 3 142 breq12i CBtwnAB10213N×0Btwn10203N×011203N×0
144 139 141 143 3orbi123i ABtwnBCBBtwnCACBtwnAB10203N×0Btwn11203N×010213N×011203N×0Btwn10213N×010203N×010213N×0Btwn10203N×011203N×0
145 137 144 sylnibr N2¬ABtwnBCBBtwnCACBtwnAB