Metamath Proof Explorer


Theorem bezoutlem3

Description: Lemma for bezout . (Contributed by Mario Carneiro, 22-Feb-2014) ( Revised by AV, 30-Sep-2020.)

Ref Expression
Hypotheses bezout.1 M=z|xyz=Ax+By
bezout.3 φA
bezout.4 φB
bezout.2 G=supM<
bezout.5 φ¬A=0B=0
Assertion bezoutlem3 φCMGC

Proof

Step Hyp Ref Expression
1 bezout.1 M=z|xyz=Ax+By
2 bezout.3 φA
3 bezout.4 φB
4 bezout.2 G=supM<
5 bezout.5 φ¬A=0B=0
6 simpr φCMCM
7 eqeq1 z=Cz=Ax+ByC=Ax+By
8 7 2rexbidv z=Cxyz=Ax+ByxyC=Ax+By
9 oveq2 x=sAx=As
10 9 oveq1d x=sAx+By=As+By
11 10 eqeq2d x=sC=Ax+ByC=As+By
12 oveq2 y=tBy=Bt
13 12 oveq2d y=tAs+By=As+Bt
14 13 eqeq2d y=tC=As+ByC=As+Bt
15 11 14 cbvrex2vw xyC=Ax+BystC=As+Bt
16 8 15 bitrdi z=Cxyz=Ax+BystC=As+Bt
17 16 1 elrab2 CMCstC=As+Bt
18 6 17 sylib φCMCstC=As+Bt
19 18 simpld φCMC
20 19 nnred φCMC
21 1 2 3 4 5 bezoutlem2 φGM
22 oveq2 x=uAx=Au
23 22 oveq1d x=uAx+By=Au+By
24 23 eqeq2d x=uz=Ax+Byz=Au+By
25 oveq2 y=vBy=Bv
26 25 oveq2d y=vAu+By=Au+Bv
27 26 eqeq2d y=vz=Au+Byz=Au+Bv
28 24 27 cbvrex2vw xyz=Ax+Byuvz=Au+Bv
29 eqeq1 z=Gz=Au+BvG=Au+Bv
30 29 2rexbidv z=Guvz=Au+BvuvG=Au+Bv
31 28 30 bitrid z=Gxyz=Ax+ByuvG=Au+Bv
32 31 1 elrab2 GMGuvG=Au+Bv
33 21 32 sylib φGuvG=Au+Bv
34 33 simpld φG
35 34 nnrpd φG+
36 35 adantr φCMG+
37 modlt CG+CmodG<G
38 20 36 37 syl2anc φCMCmodG<G
39 19 nnzd φCMC
40 34 adantr φCMG
41 39 40 zmodcld φCMCmodG0
42 41 nn0red φCMCmodG
43 34 nnred φG
44 43 adantr φCMG
45 42 44 ltnled φCMCmodG<G¬GCmodG
46 38 45 mpbid φCM¬GCmodG
47 18 simprd φCMstC=As+Bt
48 33 simprd φuvG=Au+Bv
49 48 ad2antrr φCMstuvG=Au+Bv
50 simprll φCMstuvs
51 simprrl φCMstuvu
52 20 40 nndivred φCMCG
53 52 flcld φCMCG
54 53 adantr φCMstuvCG
55 51 54 zmulcld φCMstuvuCG
56 50 55 zsubcld φCMstuvsuCG
57 simprlr φCMstuvt
58 simprrr φCMstuvv
59 58 54 zmulcld φCMstuvvCG
60 57 59 zsubcld φCMstuvtvCG
61 2 zcnd φA
62 61 ad2antrr φCMstuvA
63 50 zcnd φCMstuvs
64 62 63 mulcld φCMstuvAs
65 3 zcnd φB
66 65 ad2antrr φCMstuvB
67 57 zcnd φCMstuvt
68 66 67 mulcld φCMstuvBt
69 55 zcnd φCMstuvuCG
70 62 69 mulcld φCMstuvAuCG
71 59 zcnd φCMstuvvCG
72 66 71 mulcld φCMstuvBvCG
73 64 68 70 72 addsub4d φCMstuvAs+Bt-AuCG+BvCG=AsAuCG+Bt-BvCG
74 51 zcnd φCMstuvu
75 62 74 mulcld φCMstuvAu
76 53 zcnd φCMCG
77 76 adantr φCMstuvCG
78 58 zcnd φCMstuvv
79 66 78 mulcld φCMstuvBv
80 62 74 77 mulassd φCMstuvAuCG=AuCG
81 66 78 77 mulassd φCMstuvBvCG=BvCG
82 80 81 oveq12d φCMstuvAuCG+BvCG=AuCG+BvCG
83 75 77 79 82 joinlmuladdmuld φCMstuvAu+BvCG=AuCG+BvCG
84 83 oveq2d φCMstuvAs+Bt-Au+BvCG=As+Bt-AuCG+BvCG
85 62 63 69 subdid φCMstuvAsuCG=AsAuCG
86 66 67 71 subdid φCMstuvBtvCG=BtBvCG
87 85 86 oveq12d φCMstuvAsuCG+BtvCG=AsAuCG+Bt-BvCG
88 73 84 87 3eqtr4d φCMstuvAs+Bt-Au+BvCG=AsuCG+BtvCG
89 oveq2 x=suCGAx=AsuCG
90 89 oveq1d x=suCGAx+By=AsuCG+By
91 90 eqeq2d x=suCGAs+Bt-Au+BvCG=Ax+ByAs+Bt-Au+BvCG=AsuCG+By
92 oveq2 y=tvCGBy=BtvCG
93 92 oveq2d y=tvCGAsuCG+By=AsuCG+BtvCG
94 93 eqeq2d y=tvCGAs+Bt-Au+BvCG=AsuCG+ByAs+Bt-Au+BvCG=AsuCG+BtvCG
95 91 94 rspc2ev suCGtvCGAs+Bt-Au+BvCG=AsuCG+BtvCGxyAs+Bt-Au+BvCG=Ax+By
96 56 60 88 95 syl3anc φCMstuvxyAs+Bt-Au+BvCG=Ax+By
97 oveq1 G=Au+BvGCG=Au+BvCG
98 oveq12 C=As+BtGCG=Au+BvCGCGCG=As+Bt-Au+BvCG
99 97 98 sylan2 C=As+BtG=Au+BvCGCG=As+Bt-Au+BvCG
100 99 eqeq1d C=As+BtG=Au+BvCGCG=Ax+ByAs+Bt-Au+BvCG=Ax+By
101 100 2rexbidv C=As+BtG=Au+BvxyCGCG=Ax+ByxyAs+Bt-Au+BvCG=Ax+By
102 96 101 syl5ibrcom φCMstuvC=As+BtG=Au+BvxyCGCG=Ax+By
103 102 expcomd φCMstuvG=Au+BvC=As+BtxyCGCG=Ax+By
104 103 expr φCMstuvG=Au+BvC=As+BtxyCGCG=Ax+By
105 104 rexlimdvv φCMstuvG=Au+BvC=As+BtxyCGCG=Ax+By
106 49 105 mpd φCMstC=As+BtxyCGCG=Ax+By
107 106 ex φCMstC=As+BtxyCGCG=Ax+By
108 107 rexlimdvv φCMstC=As+BtxyCGCG=Ax+By
109 47 108 mpd φCMxyCGCG=Ax+By
110 modval CG+CmodG=CGCG
111 20 36 110 syl2anc φCMCmodG=CGCG
112 111 eqcomd φCMCGCG=CmodG
113 112 eqeq1d φCMCGCG=Ax+ByCmodG=Ax+By
114 113 2rexbidv φCMxyCGCG=Ax+ByxyCmodG=Ax+By
115 109 114 mpbid φCMxyCmodG=Ax+By
116 eqeq1 z=CmodGz=Ax+ByCmodG=Ax+By
117 116 2rexbidv z=CmodGxyz=Ax+ByxyCmodG=Ax+By
118 117 1 elrab2 CmodGMCmodGxyCmodG=Ax+By
119 118 simplbi2com xyCmodG=Ax+ByCmodGCmodGM
120 115 119 syl φCMCmodGCmodGM
121 1 ssrab3 M
122 nnuz =1
123 121 122 sseqtri M1
124 infssuzle M1CmodGMsupM<CmodG
125 123 124 mpan CmodGMsupM<CmodG
126 4 125 eqbrtrid CmodGMGCmodG
127 120 126 syl6 φCMCmodGGCmodG
128 46 127 mtod φCM¬CmodG
129 elnn0 CmodG0CmodGCmodG=0
130 41 129 sylib φCMCmodGCmodG=0
131 130 ord φCM¬CmodGCmodG=0
132 128 131 mpd φCMCmodG=0
133 dvdsval3 GCGCCmodG=0
134 40 39 133 syl2anc φCMGCCmodG=0
135 132 134 mpbird φCMGC
136 135 ex φCMGC