Metamath Proof Explorer


Theorem bfp

Description: Banach fixed point theorem, also known as contraction mapping theorem. A contraction on a complete metric space has a unique fixed point. We show existence in the lemmas, and uniqueness here - if F has two fixed points, then the distance between them is less than K times itself, a contradiction. (Contributed by Jeff Madsen, 2-Sep-2009) (Proof shortened by Mario Carneiro, 5-Jun-2014)

Ref Expression
Hypotheses bfp.2 φDCMetX
bfp.3 φX
bfp.4 φK+
bfp.5 φK<1
bfp.6 φF:XX
bfp.7 φxXyXFxDFyKxDy
Assertion bfp φ∃!zXFz=z

Proof

Step Hyp Ref Expression
1 bfp.2 φDCMetX
2 bfp.3 φX
3 bfp.4 φK+
4 bfp.5 φK<1
5 bfp.6 φF:XX
6 bfp.7 φxXyXFxDFyKxDy
7 n0 XwwX
8 2 7 sylib φwwX
9 1 adantr φwXDCMetX
10 2 adantr φwXX
11 3 adantr φwXK+
12 4 adantr φwXK<1
13 5 adantr φwXF:XX
14 6 adantlr φwXxXyXFxDFyKxDy
15 eqid MetOpenD=MetOpenD
16 simpr φwXwX
17 eqid seq1F1st×w=seq1F1st×w
18 9 10 11 12 13 14 15 16 17 bfplem2 φwXzXFz=z
19 8 18 exlimddv φzXFz=z
20 oveq12 Fx=xFy=yFxDFy=xDy
21 20 adantl φxXyXFx=xFy=yFxDFy=xDy
22 6 adantr φxXyXFx=xFy=yFxDFyKxDy
23 21 22 eqbrtrrd φxXyXFx=xFy=yxDyKxDy
24 cmetmet DCMetXDMetX
25 1 24 syl φDMetX
26 25 ad2antrr φxXyXFx=xFy=yDMetX
27 simplrl φxXyXFx=xFy=yxX
28 simplrr φxXyXFx=xFy=yyX
29 metcl DMetXxXyXxDy
30 26 27 28 29 syl3anc φxXyXFx=xFy=yxDy
31 3 rpred φK
32 31 ad2antrr φxXyXFx=xFy=yK
33 32 30 remulcld φxXyXFx=xFy=yKxDy
34 30 33 suble0d φxXyXFx=xFy=yxDyKxDy0xDyKxDy
35 23 34 mpbird φxXyXFx=xFy=yxDyKxDy0
36 1cnd φxXyXFx=xFy=y1
37 32 recnd φxXyXFx=xFy=yK
38 30 recnd φxXyXFx=xFy=yxDy
39 36 37 38 subdird φxXyXFx=xFy=y1KxDy=1xDyKxDy
40 38 mullidd φxXyXFx=xFy=y1xDy=xDy
41 40 oveq1d φxXyXFx=xFy=y1xDyKxDy=xDyKxDy
42 39 41 eqtrd φxXyXFx=xFy=y1KxDy=xDyKxDy
43 1re 1
44 resubcl 1K1K
45 43 31 44 sylancr φ1K
46 45 ad2antrr φxXyXFx=xFy=y1K
47 46 recnd φxXyXFx=xFy=y1K
48 47 mul01d φxXyXFx=xFy=y1K0=0
49 35 42 48 3brtr4d φxXyXFx=xFy=y1KxDy1K0
50 0red φxXyXFx=xFy=y0
51 posdif K1K<10<1K
52 31 43 51 sylancl φK<10<1K
53 4 52 mpbid φ0<1K
54 53 ad2antrr φxXyXFx=xFy=y0<1K
55 lemul2 xDy01K0<1KxDy01KxDy1K0
56 30 50 46 54 55 syl112anc φxXyXFx=xFy=yxDy01KxDy1K0
57 49 56 mpbird φxXyXFx=xFy=yxDy0
58 metge0 DMetXxXyX0xDy
59 26 27 28 58 syl3anc φxXyXFx=xFy=y0xDy
60 0re 0
61 letri3 xDy0xDy=0xDy00xDy
62 30 60 61 sylancl φxXyXFx=xFy=yxDy=0xDy00xDy
63 57 59 62 mpbir2and φxXyXFx=xFy=yxDy=0
64 meteq0 DMetXxXyXxDy=0x=y
65 26 27 28 64 syl3anc φxXyXFx=xFy=yxDy=0x=y
66 63 65 mpbid φxXyXFx=xFy=yx=y
67 66 ex φxXyXFx=xFy=yx=y
68 67 ralrimivva φxXyXFx=xFy=yx=y
69 fveq2 x=zFx=Fz
70 id x=zx=z
71 69 70 eqeq12d x=zFx=xFz=z
72 71 anbi1d x=zFx=xFy=yFz=zFy=y
73 equequ1 x=zx=yz=y
74 72 73 imbi12d x=zFx=xFy=yx=yFz=zFy=yz=y
75 74 ralbidv x=zyXFx=xFy=yx=yyXFz=zFy=yz=y
76 75 cbvralvw xXyXFx=xFy=yx=yzXyXFz=zFy=yz=y
77 68 76 sylib φzXyXFz=zFy=yz=y
78 fveq2 z=yFz=Fy
79 id z=yz=y
80 78 79 eqeq12d z=yFz=zFy=y
81 80 reu4 ∃!zXFz=zzXFz=zzXyXFz=zFy=yz=y
82 19 77 81 sylanbrc φ∃!zXFz=z