Step |
Hyp |
Ref |
Expression |
1 |
|
bj-finsumval0.1 |
|
2 |
|
bj-finsumval0.2 |
|
3 |
|
bj-finsumval0.3 |
|
4 |
|
df-ov |
|
5 |
|
df-bj-finsum |
|
6 |
|
simpr |
|
7 |
6
|
fveq2d |
|
8 |
1
|
adantr |
|
9 |
3 2
|
fexd |
|
10 |
9
|
adantr |
|
11 |
|
op1stg |
|
12 |
8 10 11
|
syl2anc |
|
13 |
7 12
|
eqtrd |
|
14 |
6
|
fveq2d |
|
15 |
|
op2ndg |
|
16 |
8 10 15
|
syl2anc |
|
17 |
14 16
|
eqtrd |
|
18 |
17
|
dmeqd |
|
19 |
3
|
fdmd |
|
20 |
19
|
adantr |
|
21 |
18 20
|
eqtrd |
|
22 |
|
f1oeq3 |
|
23 |
22
|
biimpd |
|
24 |
23
|
ad2antll |
|
25 |
24
|
adantrd |
|
26 |
25
|
adantr |
|
27 |
|
eqidd |
|
28 |
|
simprl |
|
29 |
28
|
fveq2d |
|
30 |
29
|
adantrr |
|
31 |
|
simprrl |
|
32 |
31
|
adantr |
|
33 |
32
|
fveq1d |
|
34 |
33
|
mpteq2dva |
|
35 |
34
|
adantrr |
|
36 |
27 30 35
|
seqeq123d |
|
37 |
|
simprr |
|
38 |
37
|
anim1ci |
|
39 |
|
hashfz1 |
|
40 |
39
|
eqcomd |
|
41 |
40
|
ad2antrl |
|
42 |
|
fzfid |
|
43 |
|
19.8a |
|
44 |
43
|
adantr |
|
45 |
|
hasheqf1oi |
|
46 |
42 44 45
|
sylc |
|
47 |
|
simprr |
|
48 |
47
|
fveq2d |
|
49 |
41 46 48
|
3eqtrd |
|
50 |
38 49
|
sylan2 |
|
51 |
36 50
|
fveq12d |
|
52 |
51
|
eqeq2d |
|
53 |
52
|
biimpd |
|
54 |
53
|
impancom |
|
55 |
54
|
com12 |
|
56 |
26 55
|
jcad |
|
57 |
22
|
biimprd |
|
58 |
57
|
ad2antll |
|
59 |
58
|
adantr |
|
60 |
59
|
adantrd |
|
61 |
|
eqidd |
|
62 |
|
simpl |
|
63 |
|
tru |
|
64 |
62 63
|
jctir |
|
65 |
64
|
ad2antrl |
|
66 |
|
simpl |
|
67 |
66
|
eqcomd |
|
68 |
65 67
|
syl |
|
69 |
68
|
fveq2d |
|
70 |
|
simpl |
|
71 |
70
|
eqcomd |
|
72 |
71
|
ad2antll |
|
73 |
72
|
adantr |
|
74 |
73
|
fveq1d |
|
75 |
74
|
adantlrr |
|
76 |
75
|
mpteq2dva |
|
77 |
61 69 76
|
seqeq123d |
|
78 |
59
|
impcom |
|
79 |
|
simprr |
|
80 |
37
|
ad2antrl |
|
81 |
78 79 80 49
|
syl12anc |
|
82 |
81
|
eqcomd |
|
83 |
77 82
|
fveq12d |
|
84 |
83
|
eqeq2d |
|
85 |
84
|
biimpd |
|
86 |
85
|
impancom |
|
87 |
86
|
com12 |
|
88 |
60 87
|
jcad |
|
89 |
56 88
|
impbid |
|
90 |
89
|
ex |
|
91 |
13 17 21 90
|
syl12anc |
|
92 |
91
|
imp |
|
93 |
92
|
exbidv |
|
94 |
93
|
rexbidva |
|
95 |
94
|
iotabidv |
|
96 |
|
eleq1 |
|
97 |
|
feq2 |
|
98 |
96 97
|
anbi12d |
|
99 |
98
|
ceqsexgv |
|
100 |
2 99
|
syl |
|
101 |
2 3 100
|
mpbir2and |
|
102 |
|
exsimpr |
|
103 |
101 102
|
syl |
|
104 |
|
df-rex |
|
105 |
103 104
|
sylibr |
|
106 |
|
eleq1 |
|
107 |
|
fveq2 |
|
108 |
107
|
feq3d |
|
109 |
108
|
rexbidv |
|
110 |
106 109
|
anbi12d |
|
111 |
|
feq1 |
|
112 |
111
|
rexbidv |
|
113 |
112
|
anbi2d |
|
114 |
110 113
|
opelopabg |
|
115 |
1 9 114
|
syl2anc |
|
116 |
1 105 115
|
mpbir2and |
|
117 |
|
iotaex |
|
118 |
117
|
a1i |
|
119 |
5 95 116 118
|
fvmptd2 |
|
120 |
4 119
|
eqtrid |
|