| Step |
Hyp |
Ref |
Expression |
| 1 |
|
bj-finsumval0.1 |
|
| 2 |
|
bj-finsumval0.2 |
|
| 3 |
|
bj-finsumval0.3 |
|
| 4 |
|
df-ov |
|
| 5 |
|
df-bj-finsum |
|
| 6 |
|
simpr |
|
| 7 |
6
|
fveq2d |
|
| 8 |
1
|
adantr |
|
| 9 |
3 2
|
fexd |
|
| 10 |
9
|
adantr |
|
| 11 |
|
op1stg |
|
| 12 |
8 10 11
|
syl2anc |
|
| 13 |
7 12
|
eqtrd |
|
| 14 |
6
|
fveq2d |
|
| 15 |
|
op2ndg |
|
| 16 |
8 10 15
|
syl2anc |
|
| 17 |
14 16
|
eqtrd |
|
| 18 |
17
|
dmeqd |
|
| 19 |
3
|
fdmd |
|
| 20 |
19
|
adantr |
|
| 21 |
18 20
|
eqtrd |
|
| 22 |
|
f1oeq3 |
|
| 23 |
22
|
biimpd |
|
| 24 |
23
|
ad2antll |
|
| 25 |
24
|
adantrd |
|
| 26 |
25
|
adantr |
|
| 27 |
|
eqidd |
|
| 28 |
|
simprl |
|
| 29 |
28
|
fveq2d |
|
| 30 |
29
|
adantrr |
|
| 31 |
|
simprrl |
|
| 32 |
31
|
adantr |
|
| 33 |
32
|
fveq1d |
|
| 34 |
33
|
mpteq2dva |
|
| 35 |
34
|
adantrr |
|
| 36 |
27 30 35
|
seqeq123d |
|
| 37 |
|
simprr |
|
| 38 |
37
|
anim1ci |
|
| 39 |
|
hashfz1 |
|
| 40 |
39
|
eqcomd |
|
| 41 |
40
|
ad2antrl |
|
| 42 |
|
fzfid |
|
| 43 |
|
19.8a |
|
| 44 |
43
|
adantr |
|
| 45 |
|
hasheqf1oi |
|
| 46 |
42 44 45
|
sylc |
|
| 47 |
|
simprr |
|
| 48 |
47
|
fveq2d |
|
| 49 |
41 46 48
|
3eqtrd |
|
| 50 |
38 49
|
sylan2 |
|
| 51 |
36 50
|
fveq12d |
|
| 52 |
51
|
eqeq2d |
|
| 53 |
52
|
biimpd |
|
| 54 |
53
|
impancom |
|
| 55 |
54
|
com12 |
|
| 56 |
26 55
|
jcad |
|
| 57 |
22
|
biimprd |
|
| 58 |
57
|
ad2antll |
|
| 59 |
58
|
adantr |
|
| 60 |
59
|
adantrd |
|
| 61 |
|
eqidd |
|
| 62 |
|
simpl |
|
| 63 |
|
tru |
|
| 64 |
62 63
|
jctir |
|
| 65 |
64
|
ad2antrl |
|
| 66 |
|
simpl |
|
| 67 |
66
|
eqcomd |
|
| 68 |
65 67
|
syl |
|
| 69 |
68
|
fveq2d |
|
| 70 |
|
simpl |
|
| 71 |
70
|
eqcomd |
|
| 72 |
71
|
ad2antll |
|
| 73 |
72
|
adantr |
|
| 74 |
73
|
fveq1d |
|
| 75 |
74
|
adantlrr |
|
| 76 |
75
|
mpteq2dva |
|
| 77 |
61 69 76
|
seqeq123d |
|
| 78 |
59
|
impcom |
|
| 79 |
|
simprr |
|
| 80 |
37
|
ad2antrl |
|
| 81 |
78 79 80 49
|
syl12anc |
|
| 82 |
81
|
eqcomd |
|
| 83 |
77 82
|
fveq12d |
|
| 84 |
83
|
eqeq2d |
|
| 85 |
84
|
biimpd |
|
| 86 |
85
|
impancom |
|
| 87 |
86
|
com12 |
|
| 88 |
60 87
|
jcad |
|
| 89 |
56 88
|
impbid |
|
| 90 |
89
|
ex |
|
| 91 |
13 17 21 90
|
syl12anc |
|
| 92 |
91
|
imp |
|
| 93 |
92
|
exbidv |
|
| 94 |
93
|
rexbidva |
|
| 95 |
94
|
iotabidv |
|
| 96 |
|
eleq1 |
|
| 97 |
|
feq2 |
|
| 98 |
96 97
|
anbi12d |
|
| 99 |
98
|
ceqsexgv |
|
| 100 |
2 99
|
syl |
|
| 101 |
2 3 100
|
mpbir2and |
|
| 102 |
|
exsimpr |
|
| 103 |
101 102
|
syl |
|
| 104 |
|
df-rex |
|
| 105 |
103 104
|
sylibr |
|
| 106 |
|
eleq1 |
|
| 107 |
|
fveq2 |
|
| 108 |
107
|
feq3d |
|
| 109 |
108
|
rexbidv |
|
| 110 |
106 109
|
anbi12d |
|
| 111 |
|
feq1 |
|
| 112 |
111
|
rexbidv |
|
| 113 |
112
|
anbi2d |
|
| 114 |
110 113
|
opelopabg |
|
| 115 |
1 9 114
|
syl2anc |
|
| 116 |
1 105 115
|
mpbir2and |
|
| 117 |
|
iotaex |
|
| 118 |
117
|
a1i |
|
| 119 |
5 95 116 118
|
fvmptd2 |
|
| 120 |
4 119
|
eqtrid |
|