Metamath Proof Explorer


Theorem bj-finsumval0

Description: Value of a finite sum. (Contributed by BJ, 9-Jun-2019) (Proof shortened by AV, 5-May-2021)

Ref Expression
Hypotheses bj-finsumval0.1 φACMnd
bj-finsumval0.2 φIFin
bj-finsumval0.3 φB:IBaseA
Assertion bj-finsumval0 φAFinSumB=ιs|m0ff:1m1-1 ontoIs=seq1+AnBfnI

Proof

Step Hyp Ref Expression
1 bj-finsumval0.1 φACMnd
2 bj-finsumval0.2 φIFin
3 bj-finsumval0.3 φB:IBaseA
4 df-ov AFinSumB=FinSumAB
5 df-bj-finsum FinSum=xyz|yCMndtFinz:tBaseyιs|m0ff:1m1-1 ontodom2ndxs=seq1+1stxn2ndxfnm
6 simpr φx=ABx=AB
7 6 fveq2d φx=AB1stx=1stAB
8 1 adantr φx=ABACMnd
9 3 2 fexd φBV
10 9 adantr φx=ABBV
11 op1stg ACMndBV1stAB=A
12 8 10 11 syl2anc φx=AB1stAB=A
13 7 12 eqtrd φx=AB1stx=A
14 6 fveq2d φx=AB2ndx=2ndAB
15 op2ndg ACMndBV2ndAB=B
16 8 10 15 syl2anc φx=AB2ndAB=B
17 14 16 eqtrd φx=AB2ndx=B
18 17 dmeqd φx=ABdom2ndx=domB
19 3 fdmd φdomB=I
20 19 adantr φx=ABdomB=I
21 18 20 eqtrd φx=ABdom2ndx=I
22 f1oeq3 dom2ndx=If:1m1-1 ontodom2ndxf:1m1-1 ontoI
23 22 biimpd dom2ndx=If:1m1-1 ontodom2ndxf:1m1-1 ontoI
24 23 ad2antll 1stx=A2ndx=Bdom2ndx=If:1m1-1 ontodom2ndxf:1m1-1 ontoI
25 24 adantrd 1stx=A2ndx=Bdom2ndx=If:1m1-1 ontodom2ndxs=seq1+1stxn2ndxfnmf:1m1-1 ontoI
26 25 adantr 1stx=A2ndx=Bdom2ndx=Im0f:1m1-1 ontodom2ndxs=seq1+1stxn2ndxfnmf:1m1-1 ontoI
27 eqidd f:1m1-1 ontodom2ndx1stx=A2ndx=Bdom2ndx=Im01=1
28 simprl f:1m1-1 ontodom2ndx1stx=A2ndx=Bdom2ndx=I1stx=A
29 28 fveq2d f:1m1-1 ontodom2ndx1stx=A2ndx=Bdom2ndx=I+1stx=+A
30 29 adantrr f:1m1-1 ontodom2ndx1stx=A2ndx=Bdom2ndx=Im0+1stx=+A
31 simprrl f:1m1-1 ontodom2ndx1stx=A2ndx=Bdom2ndx=I2ndx=B
32 31 adantr f:1m1-1 ontodom2ndx1stx=A2ndx=Bdom2ndx=In2ndx=B
33 32 fveq1d f:1m1-1 ontodom2ndx1stx=A2ndx=Bdom2ndx=In2ndxfn=Bfn
34 33 mpteq2dva f:1m1-1 ontodom2ndx1stx=A2ndx=Bdom2ndx=In2ndxfn=nBfn
35 34 adantrr f:1m1-1 ontodom2ndx1stx=A2ndx=Bdom2ndx=Im0n2ndxfn=nBfn
36 27 30 35 seqeq123d f:1m1-1 ontodom2ndx1stx=A2ndx=Bdom2ndx=Im0seq1+1stxn2ndxfn=seq1+AnBfn
37 simprr 1stx=A2ndx=Bdom2ndx=Idom2ndx=I
38 37 anim1ci 1stx=A2ndx=Bdom2ndx=Im0m0dom2ndx=I
39 hashfz1 m01m=m
40 39 eqcomd m0m=1m
41 40 ad2antrl f:1m1-1 ontodom2ndxm0dom2ndx=Im=1m
42 fzfid f:1m1-1 ontodom2ndxm0dom2ndx=I1mFin
43 19.8a f:1m1-1 ontodom2ndxff:1m1-1 ontodom2ndx
44 43 adantr f:1m1-1 ontodom2ndxm0dom2ndx=Iff:1m1-1 ontodom2ndx
45 hasheqf1oi 1mFinff:1m1-1 ontodom2ndx1m=dom2ndx
46 42 44 45 sylc f:1m1-1 ontodom2ndxm0dom2ndx=I1m=dom2ndx
47 simprr f:1m1-1 ontodom2ndxm0dom2ndx=Idom2ndx=I
48 47 fveq2d f:1m1-1 ontodom2ndxm0dom2ndx=Idom2ndx=I
49 41 46 48 3eqtrd f:1m1-1 ontodom2ndxm0dom2ndx=Im=I
50 38 49 sylan2 f:1m1-1 ontodom2ndx1stx=A2ndx=Bdom2ndx=Im0m=I
51 36 50 fveq12d f:1m1-1 ontodom2ndx1stx=A2ndx=Bdom2ndx=Im0seq1+1stxn2ndxfnm=seq1+AnBfnI
52 51 eqeq2d f:1m1-1 ontodom2ndx1stx=A2ndx=Bdom2ndx=Im0s=seq1+1stxn2ndxfnms=seq1+AnBfnI
53 52 biimpd f:1m1-1 ontodom2ndx1stx=A2ndx=Bdom2ndx=Im0s=seq1+1stxn2ndxfnms=seq1+AnBfnI
54 53 impancom f:1m1-1 ontodom2ndxs=seq1+1stxn2ndxfnm1stx=A2ndx=Bdom2ndx=Im0s=seq1+AnBfnI
55 54 com12 1stx=A2ndx=Bdom2ndx=Im0f:1m1-1 ontodom2ndxs=seq1+1stxn2ndxfnms=seq1+AnBfnI
56 26 55 jcad 1stx=A2ndx=Bdom2ndx=Im0f:1m1-1 ontodom2ndxs=seq1+1stxn2ndxfnmf:1m1-1 ontoIs=seq1+AnBfnI
57 22 biimprd dom2ndx=If:1m1-1 ontoIf:1m1-1 ontodom2ndx
58 57 ad2antll 1stx=A2ndx=Bdom2ndx=If:1m1-1 ontoIf:1m1-1 ontodom2ndx
59 58 adantr 1stx=A2ndx=Bdom2ndx=Im0f:1m1-1 ontoIf:1m1-1 ontodom2ndx
60 59 adantrd 1stx=A2ndx=Bdom2ndx=Im0f:1m1-1 ontoIs=seq1+AnBfnIf:1m1-1 ontodom2ndx
61 eqidd f:1m1-1 ontoI1stx=A2ndx=Bdom2ndx=Im01=1
62 simpl 1stx=A2ndx=Bdom2ndx=I1stx=A
63 tru
64 62 63 jctir 1stx=A2ndx=Bdom2ndx=I1stx=A
65 64 ad2antrl f:1m1-1 ontoI1stx=A2ndx=Bdom2ndx=Im01stx=A
66 simpl 1stx=A1stx=A
67 66 eqcomd 1stx=AA=1stx
68 65 67 syl f:1m1-1 ontoI1stx=A2ndx=Bdom2ndx=Im0A=1stx
69 68 fveq2d f:1m1-1 ontoI1stx=A2ndx=Bdom2ndx=Im0+A=+1stx
70 simpl 2ndx=Bdom2ndx=I2ndx=B
71 70 eqcomd 2ndx=Bdom2ndx=IB=2ndx
72 71 ad2antll f:1m1-1 ontoI1stx=A2ndx=Bdom2ndx=IB=2ndx
73 72 adantr f:1m1-1 ontoI1stx=A2ndx=Bdom2ndx=InB=2ndx
74 73 fveq1d f:1m1-1 ontoI1stx=A2ndx=Bdom2ndx=InBfn=2ndxfn
75 74 adantlrr f:1m1-1 ontoI1stx=A2ndx=Bdom2ndx=Im0nBfn=2ndxfn
76 75 mpteq2dva f:1m1-1 ontoI1stx=A2ndx=Bdom2ndx=Im0nBfn=n2ndxfn
77 61 69 76 seqeq123d f:1m1-1 ontoI1stx=A2ndx=Bdom2ndx=Im0seq1+AnBfn=seq1+1stxn2ndxfn
78 59 impcom f:1m1-1 ontoI1stx=A2ndx=Bdom2ndx=Im0f:1m1-1 ontodom2ndx
79 simprr f:1m1-1 ontoI1stx=A2ndx=Bdom2ndx=Im0m0
80 37 ad2antrl f:1m1-1 ontoI1stx=A2ndx=Bdom2ndx=Im0dom2ndx=I
81 78 79 80 49 syl12anc f:1m1-1 ontoI1stx=A2ndx=Bdom2ndx=Im0m=I
82 81 eqcomd f:1m1-1 ontoI1stx=A2ndx=Bdom2ndx=Im0I=m
83 77 82 fveq12d f:1m1-1 ontoI1stx=A2ndx=Bdom2ndx=Im0seq1+AnBfnI=seq1+1stxn2ndxfnm
84 83 eqeq2d f:1m1-1 ontoI1stx=A2ndx=Bdom2ndx=Im0s=seq1+AnBfnIs=seq1+1stxn2ndxfnm
85 84 biimpd f:1m1-1 ontoI1stx=A2ndx=Bdom2ndx=Im0s=seq1+AnBfnIs=seq1+1stxn2ndxfnm
86 85 impancom f:1m1-1 ontoIs=seq1+AnBfnI1stx=A2ndx=Bdom2ndx=Im0s=seq1+1stxn2ndxfnm
87 86 com12 1stx=A2ndx=Bdom2ndx=Im0f:1m1-1 ontoIs=seq1+AnBfnIs=seq1+1stxn2ndxfnm
88 60 87 jcad 1stx=A2ndx=Bdom2ndx=Im0f:1m1-1 ontoIs=seq1+AnBfnIf:1m1-1 ontodom2ndxs=seq1+1stxn2ndxfnm
89 56 88 impbid 1stx=A2ndx=Bdom2ndx=Im0f:1m1-1 ontodom2ndxs=seq1+1stxn2ndxfnmf:1m1-1 ontoIs=seq1+AnBfnI
90 89 ex 1stx=A2ndx=Bdom2ndx=Im0f:1m1-1 ontodom2ndxs=seq1+1stxn2ndxfnmf:1m1-1 ontoIs=seq1+AnBfnI
91 13 17 21 90 syl12anc φx=ABm0f:1m1-1 ontodom2ndxs=seq1+1stxn2ndxfnmf:1m1-1 ontoIs=seq1+AnBfnI
92 91 imp φx=ABm0f:1m1-1 ontodom2ndxs=seq1+1stxn2ndxfnmf:1m1-1 ontoIs=seq1+AnBfnI
93 92 exbidv φx=ABm0ff:1m1-1 ontodom2ndxs=seq1+1stxn2ndxfnmff:1m1-1 ontoIs=seq1+AnBfnI
94 93 rexbidva φx=ABm0ff:1m1-1 ontodom2ndxs=seq1+1stxn2ndxfnmm0ff:1m1-1 ontoIs=seq1+AnBfnI
95 94 iotabidv φx=ABιs|m0ff:1m1-1 ontodom2ndxs=seq1+1stxn2ndxfnm=ιs|m0ff:1m1-1 ontoIs=seq1+AnBfnI
96 eleq1 t=ItFinIFin
97 feq2 t=IB:tBaseAB:IBaseA
98 96 97 anbi12d t=ItFinB:tBaseAIFinB:IBaseA
99 98 ceqsexgv IFintt=ItFinB:tBaseAIFinB:IBaseA
100 2 99 syl φtt=ItFinB:tBaseAIFinB:IBaseA
101 2 3 100 mpbir2and φtt=ItFinB:tBaseA
102 exsimpr tt=ItFinB:tBaseAttFinB:tBaseA
103 101 102 syl φttFinB:tBaseA
104 df-rex tFinB:tBaseAttFinB:tBaseA
105 103 104 sylibr φtFinB:tBaseA
106 eleq1 y=AyCMndACMnd
107 fveq2 y=ABasey=BaseA
108 107 feq3d y=Az:tBaseyz:tBaseA
109 108 rexbidv y=AtFinz:tBaseytFinz:tBaseA
110 106 109 anbi12d y=AyCMndtFinz:tBaseyACMndtFinz:tBaseA
111 feq1 z=Bz:tBaseAB:tBaseA
112 111 rexbidv z=BtFinz:tBaseAtFinB:tBaseA
113 112 anbi2d z=BACMndtFinz:tBaseAACMndtFinB:tBaseA
114 110 113 opelopabg ACMndBVAByz|yCMndtFinz:tBaseyACMndtFinB:tBaseA
115 1 9 114 syl2anc φAByz|yCMndtFinz:tBaseyACMndtFinB:tBaseA
116 1 105 115 mpbir2and φAByz|yCMndtFinz:tBasey
117 iotaex ιs|m0ff:1m1-1 ontoIs=seq1+AnBfnIV
118 117 a1i φιs|m0ff:1m1-1 ontoIs=seq1+AnBfnIV
119 5 95 116 118 fvmptd2 φFinSumAB=ιs|m0ff:1m1-1 ontoIs=seq1+AnBfnI
120 4 119 eqtrid φAFinSumB=ιs|m0ff:1m1-1 ontoIs=seq1+AnBfnI