Metamath Proof Explorer


Theorem cantnf2

Description: For every ordinal, A , there is a an ordinal exponent b such that A is less than ( _om ^o b ) and for every ordinal at least as large as b there is a unique Cantor normal form, f , with zeros for all the unnecessary higher terms, that sums to A . Theorem 5.3 of Schloeder p. 16. (Contributed by RP, 3-Feb-2025)

Ref Expression
Assertion cantnf2 AOnbOncOnb∃!fdomωCNFcAω𝑜bfinSuppfωCNFbfb=AωCNFcf=A

Proof

Step Hyp Ref Expression
1 onexoegt AOnbOnAω𝑜b
2 eldif cOnbcOn¬cb
3 simp2 AOnbOnAω𝑜bbOn
4 pm3.2 bOncOnbOncOn
5 3 4 syl AOnbOnAω𝑜bcOnbOncOn
6 ontri1 bOncOnbc¬cb
7 5 6 syl6 AOnbOnAω𝑜bcOnbc¬cb
8 7 pm5.32d AOnbOnAω𝑜bcOnbccOn¬cb
9 2 8 bitr4id AOnbOnAω𝑜bcOnbcOnbc
10 simplr AOnbOnAω𝑜bcOnbca=AfdomωCNFca=A
11 10 breq2d AOnbOnAω𝑜bcOnbca=AfdomωCNFcfωCNFcafωCNFcA
12 eqid domωCNFc=domωCNFc
13 omelon ωOn
14 13 a1i AOnbOnAω𝑜bcOnbca=AfdomωCNFcωOn
15 simprl AOnbOnAω𝑜bcOnbccOn
16 15 ad2antrr AOnbOnAω𝑜bcOnbca=AfdomωCNFccOn
17 12 14 16 cantnff1o AOnbOnAω𝑜bcOnbca=AfdomωCNFcωCNFc:domωCNFc1-1 ontoω𝑜c
18 f1ofun ωCNFc:domωCNFc1-1 ontoω𝑜cFunωCNFc
19 17 18 syl AOnbOnAω𝑜bcOnbca=AfdomωCNFcFunωCNFc
20 funbrfvb FunωCNFcfdomωCNFcωCNFcf=AfωCNFcA
21 19 20 sylancom AOnbOnAω𝑜bcOnbca=AfdomωCNFcωCNFcf=AfωCNFcA
22 11 21 bitr4d AOnbOnAω𝑜bcOnbca=AfdomωCNFcfωCNFcaωCNFcf=A
23 22 reubidva AOnbOnAω𝑜bcOnbca=A∃!fdomωCNFcfωCNFca∃!fdomωCNFcωCNFcf=A
24 simpl2 AOnbOnAω𝑜bcOnbcbOn
25 13 a1i AOnbOnAω𝑜bcOnbcωOn
26 24 15 25 3jca AOnbOnAω𝑜bcOnbcbOncOnωOn
27 peano1 ω
28 26 27 jctir AOnbOnAω𝑜bcOnbcbOncOnωOnω
29 simprr AOnbOnAω𝑜bcOnbcbc
30 oewordi bOncOnωOnωbcω𝑜bω𝑜c
31 28 29 30 sylc AOnbOnAω𝑜bcOnbcω𝑜bω𝑜c
32 simpl3 AOnbOnAω𝑜bcOnbcAω𝑜b
33 31 32 sseldd AOnbOnAω𝑜bcOnbcAω𝑜c
34 12 25 15 cantnff1o AOnbOnAω𝑜bcOnbcωCNFc:domωCNFc1-1 ontoω𝑜c
35 dff1o5 ωCNFc:domωCNFc1-1 ontoω𝑜cωCNFc:domωCNFc1-1ω𝑜cranωCNFc=ω𝑜c
36 simpr ωCNFc:domωCNFc1-1ω𝑜cranωCNFc=ω𝑜cranωCNFc=ω𝑜c
37 35 36 sylbi ωCNFc:domωCNFc1-1 ontoω𝑜cranωCNFc=ω𝑜c
38 34 37 syl AOnbOnAω𝑜bcOnbcranωCNFc=ω𝑜c
39 33 38 eleqtrrd AOnbOnAω𝑜bcOnbcAranωCNFc
40 dff1o2 ωCNFc:domωCNFc1-1 ontoω𝑜cωCNFcFndomωCNFcFunωCNFc-1ranωCNFc=ω𝑜c
41 simp2 ωCNFcFndomωCNFcFunωCNFc-1ranωCNFc=ω𝑜cFunωCNFc-1
42 40 41 sylbi ωCNFc:domωCNFc1-1 ontoω𝑜cFunωCNFc-1
43 34 42 syl AOnbOnAω𝑜bcOnbcFunωCNFc-1
44 funcnv3 FunωCNFc-1aranωCNFc∃!fdomωCNFcfωCNFca
45 43 44 sylib AOnbOnAω𝑜bcOnbcaranωCNFc∃!fdomωCNFcfωCNFca
46 23 39 45 rspcdv2 AOnbOnAω𝑜bcOnbc∃!fdomωCNFcωCNFcf=A
47 32 ad2antrr AOnbOnAω𝑜bcOnbcfdomωCNFcωCNFcf=AAω𝑜b
48 simplr AOnbOnAω𝑜bcOnbcfdomωCNFcωCNFcf=AfdomωCNFc
49 13 a1i AOnbOnAω𝑜bcOnbcfdomωCNFcωCNFcf=AωOn
50 15 ad2antrr AOnbOnAω𝑜bcOnbcfdomωCNFcωCNFcf=AcOn
51 12 49 50 cantnfs AOnbOnAω𝑜bcOnbcfdomωCNFcωCNFcf=AfdomωCNFcf:cωfinSuppf
52 48 51 mpbid AOnbOnAω𝑜bcOnbcfdomωCNFcωCNFcf=Af:cωfinSuppf
53 simpr f:cωfinSuppffinSuppf
54 52 53 syl AOnbOnAω𝑜bcOnbcfdomωCNFcωCNFcf=AfinSuppf
55 eqid domωCNFb=domωCNFb
56 24 ad2antrr AOnbOnAω𝑜bcOnbcfdomωCNFcωCNFcf=AbOn
57 29 ad2antrr AOnbOnAω𝑜bcOnbcfdomωCNFcωCNFcf=Abc
58 simpr AOnbOnAω𝑜bcOnbcfdomωCNFcωCNFcf=AωCNFcf=A
59 58 47 eqeltrd AOnbOnAω𝑜bcOnbcfdomωCNFcωCNFcf=AωCNFcfω𝑜b
60 1onn 1𝑜ω
61 ondif2 ωOn2𝑜ωOn1𝑜ω
62 13 60 61 mpbir2an ωOn2𝑜
63 62 a1i AOnbOnAω𝑜bcOnbcfdomωCNFcωCNFcf=AωOn2𝑜
64 cantnfresb ωOn2𝑜cOnbOnfdomωCNFcωCNFcfω𝑜bdcbfd=
65 63 50 56 48 64 syl22anc AOnbOnAω𝑜bcOnbcfdomωCNFcωCNFcf=AωCNFcfω𝑜bdcbfd=
66 59 65 mpbid AOnbOnAω𝑜bcOnbcfdomωCNFcωCNFcf=Adcbfd=
67 66 r19.21bi AOnbOnAω𝑜bcOnbcfdomωCNFcωCNFcf=Adcbfd=
68 27 a1i AOnbOnAω𝑜bcOnbcfdomωCNFcωCNFcf=Aω
69 simpllr AOnbOnAω𝑜bcOnbcfdomωCNFcωCNFcf=AdbfdomωCNFc
70 13 a1i AOnbOnAω𝑜bcOnbcfdomωCNFcωCNFcf=AdbωOn
71 15 adantr AOnbOnAω𝑜bcOnbcfdomωCNFccOn
72 71 ad2antrr AOnbOnAω𝑜bcOnbcfdomωCNFcωCNFcf=AdbcOn
73 12 70 72 cantnfs AOnbOnAω𝑜bcOnbcfdomωCNFcωCNFcf=AdbfdomωCNFcf:cωfinSuppf
74 69 73 mpbid AOnbOnAω𝑜bcOnbcfdomωCNFcωCNFcf=Adbf:cωfinSuppf
75 74 simpld AOnbOnAω𝑜bcOnbcfdomωCNFcωCNFcf=Adbf:cω
76 57 sselda AOnbOnAω𝑜bcOnbcfdomωCNFcωCNFcf=Adbdc
77 75 76 ffvelcdmd AOnbOnAω𝑜bcOnbcfdomωCNFcωCNFcf=Adbfdω
78 77 fmpttd AOnbOnAω𝑜bcOnbcfdomωCNFcωCNFcf=Adbfd:bω
79 12 25 15 cantnfs AOnbOnAω𝑜bcOnbcfdomωCNFcf:cωfinSuppf
80 79 simprbda AOnbOnAω𝑜bcOnbcfdomωCNFcf:cω
81 80 adantr AOnbOnAω𝑜bcOnbcfdomωCNFcωCNFcf=Af:cω
82 81 57 feqresmpt AOnbOnAω𝑜bcOnbcfdomωCNFcωCNFcf=Afb=dbfd
83 54 68 fsuppres AOnbOnAω𝑜bcOnbcfdomωCNFcωCNFcf=AfinSuppfb
84 82 83 eqbrtrrd AOnbOnAω𝑜bcOnbcfdomωCNFcωCNFcf=AfinSuppdbfd
85 55 49 56 cantnfs AOnbOnAω𝑜bcOnbcfdomωCNFcωCNFcf=AdbfddomωCNFbdbfd:bωfinSuppdbfd
86 78 84 85 mpbir2and AOnbOnAω𝑜bcOnbcfdomωCNFcωCNFcf=AdbfddomωCNFb
87 55 49 56 50 57 67 68 12 86 cantnfres AOnbOnAω𝑜bcOnbcfdomωCNFcωCNFcf=AωCNFbdbfd=ωCNFcdcfd
88 82 fveq2d AOnbOnAω𝑜bcOnbcfdomωCNFcωCNFcf=AωCNFbfb=ωCNFbdbfd
89 81 feqmptd AOnbOnAω𝑜bcOnbcfdomωCNFcωCNFcf=Af=dcfd
90 89 fveq2d AOnbOnAω𝑜bcOnbcfdomωCNFcωCNFcf=AωCNFcf=ωCNFcdcfd
91 87 88 90 3eqtr4d AOnbOnAω𝑜bcOnbcfdomωCNFcωCNFcf=AωCNFbfb=ωCNFcf
92 91 58 eqtrd AOnbOnAω𝑜bcOnbcfdomωCNFcωCNFcf=AωCNFbfb=A
93 47 54 92 3jca AOnbOnAω𝑜bcOnbcfdomωCNFcωCNFcf=AAω𝑜bfinSuppfωCNFbfb=A
94 93 ex AOnbOnAω𝑜bcOnbcfdomωCNFcωCNFcf=AAω𝑜bfinSuppfωCNFbfb=A
95 94 pm4.71rd AOnbOnAω𝑜bcOnbcfdomωCNFcωCNFcf=AAω𝑜bfinSuppfωCNFbfb=AωCNFcf=A
96 3an4anass Aω𝑜bfinSuppfωCNFbfb=AωCNFcf=AAω𝑜bfinSuppfωCNFbfb=AωCNFcf=A
97 95 96 bitrdi AOnbOnAω𝑜bcOnbcfdomωCNFcωCNFcf=AAω𝑜bfinSuppfωCNFbfb=AωCNFcf=A
98 97 reubidva AOnbOnAω𝑜bcOnbc∃!fdomωCNFcωCNFcf=A∃!fdomωCNFcAω𝑜bfinSuppfωCNFbfb=AωCNFcf=A
99 46 98 mpbid AOnbOnAω𝑜bcOnbc∃!fdomωCNFcAω𝑜bfinSuppfωCNFbfb=AωCNFcf=A
100 99 ex AOnbOnAω𝑜bcOnbc∃!fdomωCNFcAω𝑜bfinSuppfωCNFbfb=AωCNFcf=A
101 9 100 sylbid AOnbOnAω𝑜bcOnb∃!fdomωCNFcAω𝑜bfinSuppfωCNFbfb=AωCNFcf=A
102 101 ralrimiv AOnbOnAω𝑜bcOnb∃!fdomωCNFcAω𝑜bfinSuppfωCNFbfb=AωCNFcf=A
103 102 3exp AOnbOnAω𝑜bcOnb∃!fdomωCNFcAω𝑜bfinSuppfωCNFbfb=AωCNFcf=A
104 103 reximdvai AOnbOnAω𝑜bbOncOnb∃!fdomωCNFcAω𝑜bfinSuppfωCNFbfb=AωCNFcf=A
105 1 104 mpd AOnbOncOnb∃!fdomωCNFcAω𝑜bfinSuppfωCNFbfb=AωCNFcf=A