Metamath Proof Explorer


Theorem caucfil

Description: A Cauchy sequence predicate can be expressed in terms of the Cauchy filter predicate for a suitably chosen filter. (Contributed by Mario Carneiro, 13-Oct-2015)

Ref Expression
Hypotheses caucfil.1 Z=M
caucfil.2 L=XFilMapFZ
Assertion caucfil D∞MetXMF:ZXFCauDLCauFilD

Proof

Step Hyp Ref Expression
1 caucfil.1 Z=M
2 caucfil.2 L=XFilMapFZ
3 df-3an kdomFFkXmkFkDFm<xkdomFFkXmkFkDFm<x
4 1 uztrn2 jZkjkZ
5 4 adantll D∞MetXMF:ZXjZkjkZ
6 simpll3 D∞MetXMF:ZXjZkjF:ZX
7 6 fdmd D∞MetXMF:ZXjZkjdomF=Z
8 5 7 eleqtrrd D∞MetXMF:ZXjZkjkdomF
9 6 5 ffvelcdmd D∞MetXMF:ZXjZkjFkX
10 8 9 jca D∞MetXMF:ZXjZkjkdomFFkX
11 10 biantrurd D∞MetXMF:ZXjZkjmkFkDFm<xkdomFFkXmkFkDFm<x
12 uzss kjkj
13 12 adantl D∞MetXMF:ZXjZkjkj
14 13 sseld D∞MetXMF:ZXjZkjmkmj
15 14 pm4.71rd D∞MetXMF:ZXjZkjmkmjmk
16 15 imbi1d D∞MetXMF:ZXjZkjmkFkDFm<xmjmkFkDFm<x
17 impexp mjmkFkDFm<xmjmkFkDFm<x
18 16 17 bitrdi D∞MetXMF:ZXjZkjmkFkDFm<xmjmkFkDFm<x
19 18 ralbidv2 D∞MetXMF:ZXjZkjmkFkDFm<xmjmkFkDFm<x
20 11 19 bitr3d D∞MetXMF:ZXjZkjkdomFFkXmkFkDFm<xmjmkFkDFm<x
21 3 20 bitrid D∞MetXMF:ZXjZkjkdomFFkXmkFkDFm<xmjmkFkDFm<x
22 21 ralbidva D∞MetXMF:ZXjZkjkdomFFkXmkFkDFm<xkjmjmkFkDFm<x
23 r19.26-2 kjmjmkFkDFm<xkmFmDFk<xkjmjmkFkDFm<xkjmjkmFmDFk<x
24 eleq1w u=kumkm
25 fveq2 u=kFu=Fk
26 25 oveq2d u=kFmDFu=FmDFk
27 26 breq1d u=kFmDFu<xFmDFk<x
28 24 27 imbi12d u=kumFmDFu<xkmFmDFk<x
29 28 cbvralvw ujumFmDFu<xkjkmFmDFk<x
30 29 ralbii mjujumFmDFu<xmjkjkmFmDFk<x
31 fveq2 m=km=k
32 31 eleq2d m=kumuk
33 fveq2 m=kFm=Fk
34 33 oveq1d m=kFmDFu=FkDFu
35 34 breq1d m=kFmDFu<xFkDFu<x
36 32 35 imbi12d m=kumFmDFu<xukFkDFu<x
37 eleq1w u=mukmk
38 fveq2 u=mFu=Fm
39 38 oveq2d u=mFkDFu=FkDFm
40 39 breq1d u=mFkDFu<xFkDFm<x
41 37 40 imbi12d u=mukFkDFu<xmkFkDFm<x
42 36 41 cbvral2vw mjujumFmDFu<xkjmjmkFkDFm<x
43 ralcom mjkjkmFmDFk<xkjmjkmFmDFk<x
44 30 42 43 3bitr3i kjmjmkFkDFm<xkjmjkmFmDFk<x
45 44 anbi2i kjmjmkFkDFm<xkjmjmkFkDFm<xkjmjmkFkDFm<xkjmjkmFmDFk<x
46 anidm kjmjmkFkDFm<xkjmjmkFkDFm<xkjmjmkFkDFm<x
47 23 45 46 3bitr2i kjmjmkFkDFm<xkmFmDFk<xkjmjmkFkDFm<x
48 simpll1 D∞MetXMF:ZXjZkjmjD∞MetX
49 simpll3 D∞MetXMF:ZXjZkjmjF:ZX
50 1 uztrn2 jZmjmZ
51 50 ad2ant2l D∞MetXMF:ZXjZkjmjmZ
52 49 51 ffvelcdmd D∞MetXMF:ZXjZkjmjFmX
53 9 adantrr D∞MetXMF:ZXjZkjmjFkX
54 xmetsym D∞MetXFmXFkXFmDFk=FkDFm
55 48 52 53 54 syl3anc D∞MetXMF:ZXjZkjmjFmDFk=FkDFm
56 55 breq1d D∞MetXMF:ZXjZkjmjFmDFk<xFkDFm<x
57 56 imbi2d D∞MetXMF:ZXjZkjmjkmFmDFk<xkmFkDFm<x
58 57 anbi2d D∞MetXMF:ZXjZkjmjmkFkDFm<xkmFmDFk<xmkFkDFm<xkmFkDFm<x
59 jaob mkkmFkDFm<xmkFkDFm<xkmFkDFm<x
60 eluzelz kjk
61 eluzelz mjm
62 uztric kmmkkm
63 60 61 62 syl2an kjmjmkkm
64 63 adantl D∞MetXMF:ZXjZkjmjmkkm
65 pm5.5 mkkmmkkmFkDFm<xFkDFm<x
66 64 65 syl D∞MetXMF:ZXjZkjmjmkkmFkDFm<xFkDFm<x
67 59 66 bitr3id D∞MetXMF:ZXjZkjmjmkFkDFm<xkmFkDFm<xFkDFm<x
68 58 67 bitrd D∞MetXMF:ZXjZkjmjmkFkDFm<xkmFmDFk<xFkDFm<x
69 68 2ralbidva D∞MetXMF:ZXjZkjmjmkFkDFm<xkmFmDFk<xkjmjFkDFm<x
70 47 69 bitr3id D∞MetXMF:ZXjZkjmjmkFkDFm<xkjmjFkDFm<x
71 22 70 bitrd D∞MetXMF:ZXjZkjkdomFFkXmkFkDFm<xkjmjFkDFm<x
72 71 rexbidva D∞MetXMF:ZXjZkjkdomFFkXmkFkDFm<xjZkjmjFkDFm<x
73 uzf :𝒫
74 ffn :𝒫Fn
75 73 74 ax-mp Fn
76 uzssz M
77 1 76 eqsstri Z
78 raleq u=jmuFkDFm<xmjFkDFm<x
79 78 raleqbi1dv u=jkumuFkDFm<xkjmjFkDFm<x
80 79 rexima FnZuZkumuFkDFm<xjZkjmjFkDFm<x
81 75 77 80 mp2an uZkumuFkDFm<xjZkjmjFkDFm<x
82 72 81 bitr4di D∞MetXMF:ZXjZkjkdomFFkXmkFkDFm<xuZkumuFkDFm<x
83 82 ralbidv D∞MetXMF:ZXx+jZkjkdomFFkXmkFkDFm<xx+uZkumuFkDFm<x
84 elfvdm D∞MetXXdom∞Met
85 84 adantr D∞MetXMXdom∞Met
86 cnex V
87 85 86 jctir D∞MetXMXdom∞MetV
88 zsscn
89 77 88 sstri Z
90 89 jctr F:ZXF:ZXZ
91 elpm2r Xdom∞MetVF:ZXZFX𝑝𝑚
92 87 90 91 syl2an D∞MetXMF:ZXFX𝑝𝑚
93 simpl D∞MetXMD∞MetX
94 simpr D∞MetXMM
95 1 93 94 iscau3 D∞MetXMFCauDFX𝑝𝑚x+jZkjkdomFFkXmkFkDFm<x
96 95 baibd D∞MetXMFX𝑝𝑚FCauDx+jZkjkdomFFkXmkFkDFm<x
97 92 96 syldan D∞MetXMF:ZXFCauDx+jZkjkdomFFkXmkFkDFm<x
98 97 3impa D∞MetXMF:ZXFCauDx+jZkjkdomFFkXmkFkDFm<x
99 2 eleq1i LCauFilDXFilMapFZCauFilD
100 1 uzfbas MZfBasZ
101 fmcfil D∞MetXZfBasZF:ZXXFilMapFZCauFilDx+uZkumuFkDFm<x
102 100 101 syl3an2 D∞MetXMF:ZXXFilMapFZCauFilDx+uZkumuFkDFm<x
103 99 102 bitrid D∞MetXMF:ZXLCauFilDx+uZkumuFkDFm<x
104 83 98 103 3bitr4d D∞MetXMF:ZXFCauDLCauFilD