Metamath Proof Explorer


Theorem chfacfisfcpmat

Description: The "characteristic factor function" is a function from the nonnegative integers to constant polynomial matrices. (Contributed by AV, 19-Nov-2019)

Ref Expression
Hypotheses chfacfisf.a A=NMatR
chfacfisf.b B=BaseA
chfacfisf.p P=Poly1R
chfacfisf.y Y=NMatP
chfacfisf.r ×˙=Y
chfacfisf.s -˙=-Y
chfacfisf.0 0˙=0Y
chfacfisf.t T=NmatToPolyMatR
chfacfisf.g G=n0ifn=00˙-˙TM×˙Tb0ifn=s+1Tbsifs+1<n0˙Tbn1-˙TM×˙Tbn
chfacfisfcpmat.s S=NConstPolyMatR
Assertion chfacfisfcpmat NFinRRingMBsbB0sG:0S

Proof

Step Hyp Ref Expression
1 chfacfisf.a A=NMatR
2 chfacfisf.b B=BaseA
3 chfacfisf.p P=Poly1R
4 chfacfisf.y Y=NMatP
5 chfacfisf.r ×˙=Y
6 chfacfisf.s -˙=-Y
7 chfacfisf.0 0˙=0Y
8 chfacfisf.t T=NmatToPolyMatR
9 chfacfisf.g G=n0ifn=00˙-˙TM×˙Tb0ifn=s+1Tbsifs+1<n0˙Tbn1-˙TM×˙Tbn
10 chfacfisfcpmat.s S=NConstPolyMatR
11 10 3 4 cpmatsubgpmat NFinRRingSSubGrpY
12 11 3adant3 NFinRRingMBSSubGrpY
13 12 adantr NFinRRingMBsbB0sSSubGrpY
14 subgsubm SSubGrpYSSubMndY
15 7 subm0cl SSubMndY0˙S
16 12 14 15 3syl NFinRRingMB0˙S
17 16 adantr NFinRRingMBsbB0s0˙S
18 10 3 4 cpmatsrgpmat NFinRRingSSubRingY
19 18 3adant3 NFinRRingMBSSubRingY
20 19 adantr NFinRRingMBsbB0sSSubRingY
21 10 8 1 2 m2cpm NFinRRingMBTMS
22 21 adantr NFinRRingMBsbB0sTMS
23 3simpa NFinRRingMBNFinRRing
24 elmapi bB0sb:0sB
25 24 adantl sbB0sb:0sB
26 nnnn0 ss0
27 nn0uz 0=0
28 26 27 eleqtrdi ss0
29 eluzfz1 s000s
30 28 29 syl s00s
31 30 adantr sbB0s00s
32 25 31 ffvelcdmd sbB0sb0B
33 23 32 anim12i NFinRRingMBsbB0sNFinRRingb0B
34 df-3an NFinRRingb0BNFinRRingb0B
35 33 34 sylibr NFinRRingMBsbB0sNFinRRingb0B
36 10 8 1 2 m2cpm NFinRRingb0BTb0S
37 35 36 syl NFinRRingMBsbB0sTb0S
38 5 subrgmcl SSubRingYTMSTb0STM×˙Tb0S
39 20 22 37 38 syl3anc NFinRRingMBsbB0sTM×˙Tb0S
40 6 subgsubcl SSubGrpY0˙STM×˙Tb0S0˙-˙TM×˙Tb0S
41 13 17 39 40 syl3anc NFinRRingMBsbB0s0˙-˙TM×˙Tb0S
42 41 ad2antrr NFinRRingMBsbB0sn0n=00˙-˙TM×˙Tb0S
43 simpl1 NFinRRingMBsbB0sNFin
44 simpl2 NFinRRingMBsbB0sRRing
45 25 adantl NFinRRingMBsbB0sb:0sB
46 eluzfz2 s0s0s
47 28 46 syl ss0s
48 47 ad2antrl NFinRRingMBsbB0ss0s
49 45 48 ffvelcdmd NFinRRingMBsbB0sbsB
50 10 8 1 2 m2cpm NFinRRingbsBTbsS
51 43 44 49 50 syl3anc NFinRRingMBsbB0sTbsS
52 51 adantr NFinRRingMBsbB0sn0TbsS
53 52 ad2antrr NFinRRingMBsbB0sn0¬n=0n=s+1TbsS
54 17 ad4antr NFinRRingMBsbB0sn0¬n=0¬n=s+1s+1<n0˙S
55 nn0re n0n
56 55 adantl sn0n
57 peano2nn ss+1
58 57 nnred ss+1
59 58 adantr sn0s+1
60 56 59 lenltd sn0ns+1¬s+1<n
61 nesym s+1n¬n=s+1
62 ltlen ns+1n<s+1ns+1s+1n
63 55 58 62 syl2anr sn0n<s+1ns+1s+1n
64 63 biimprd sn0ns+1s+1nn<s+1
65 64 expcomd sn0s+1nns+1n<s+1
66 61 65 biimtrrid sn0¬n=s+1ns+1n<s+1
67 66 com23 sn0ns+1¬n=s+1n<s+1
68 60 67 sylbird sn0¬s+1<n¬n=s+1n<s+1
69 68 impcomd sn0¬n=s+1¬s+1<nn<s+1
70 69 ex sn0¬n=s+1¬s+1<nn<s+1
71 70 ad2antrl NFinRRingMBsbB0sn0¬n=s+1¬s+1<nn<s+1
72 71 imp NFinRRingMBsbB0sn0¬n=s+1¬s+1<nn<s+1
73 72 adantr NFinRRingMBsbB0sn0¬n=0¬n=s+1¬s+1<nn<s+1
74 12 ad4antr NFinRRingMBsbB0sn0¬n=0n<s+1SSubGrpY
75 23 ad4antr NFinRRingMBsbB0sn0¬n=0n<s+1NFinRRing
76 25 ad4antlr NFinRRingMBsbB0sn0¬n=0n<s+1b:0sB
77 neqne ¬n=0n0
78 77 anim2i n0¬n=0n0n0
79 elnnne0 nn0n0
80 78 79 sylibr n0¬n=0n
81 nnm1nn0 nn10
82 80 81 syl n0¬n=0n10
83 82 ad4ant23 NFinRRingMBsbB0sn0¬n=0n<s+1n10
84 26 adantr sbB0ss0
85 84 ad4antlr NFinRRingMBsbB0sn0¬n=0n<s+1s0
86 63 simprbda sn0n<s+1ns+1
87 56 adantr sn0n<s+1n
88 1red sn0n<s+11
89 nnre ss
90 89 ad2antrr sn0n<s+1s
91 87 88 90 lesubaddd sn0n<s+1n1sns+1
92 86 91 mpbird sn0n<s+1n1s
93 92 exp31 sn0n<s+1n1s
94 93 ad2antrl NFinRRingMBsbB0sn0n<s+1n1s
95 94 imp NFinRRingMBsbB0sn0n<s+1n1s
96 95 adantr NFinRRingMBsbB0sn0¬n=0n<s+1n1s
97 96 imp NFinRRingMBsbB0sn0¬n=0n<s+1n1s
98 elfz2nn0 n10sn10s0n1s
99 83 85 97 98 syl3anbrc NFinRRingMBsbB0sn0¬n=0n<s+1n10s
100 76 99 ffvelcdmd NFinRRingMBsbB0sn0¬n=0n<s+1bn1B
101 df-3an NFinRRingbn1BNFinRRingbn1B
102 75 100 101 sylanbrc NFinRRingMBsbB0sn0¬n=0n<s+1NFinRRingbn1B
103 10 8 1 2 m2cpm NFinRRingbn1BTbn1S
104 102 103 syl NFinRRingMBsbB0sn0¬n=0n<s+1Tbn1S
105 20 ad2antrr NFinRRingMBsbB0sn0n<s+1SSubRingY
106 22 ad2antrr NFinRRingMBsbB0sn0n<s+1TMS
107 23 84 anim12i NFinRRingMBsbB0sNFinRRings0
108 df-3an NFinRRings0NFinRRings0
109 107 108 sylibr NFinRRingMBsbB0sNFinRRings0
110 109 ad2antrr NFinRRingMBsbB0sn0n<s+1NFinRRings0
111 110 simp1d NFinRRingMBsbB0sn0n<s+1NFin
112 110 simp2d NFinRRingMBsbB0sn0n<s+1RRing
113 45 ad2antrr NFinRRingMBsbB0sn0n<s+1b:0sB
114 simplr sn0n<s+1n0
115 26 ad2antrr sn0n<s+1s0
116 nn0z n0n
117 nnz ss
118 zleltp1 nsnsn<s+1
119 116 117 118 syl2anr sn0nsn<s+1
120 119 biimpar sn0n<s+1ns
121 elfz2nn0 n0sn0s0ns
122 114 115 120 121 syl3anbrc sn0n<s+1n0s
123 122 exp31 sn0n<s+1n0s
124 123 ad2antrl NFinRRingMBsbB0sn0n<s+1n0s
125 124 imp31 NFinRRingMBsbB0sn0n<s+1n0s
126 113 125 ffvelcdmd NFinRRingMBsbB0sn0n<s+1bnB
127 10 8 1 2 m2cpm NFinRRingbnBTbnS
128 111 112 126 127 syl3anc NFinRRingMBsbB0sn0n<s+1TbnS
129 5 subrgmcl SSubRingYTMSTbnSTM×˙TbnS
130 105 106 128 129 syl3anc NFinRRingMBsbB0sn0n<s+1TM×˙TbnS
131 130 adantlr NFinRRingMBsbB0sn0¬n=0n<s+1TM×˙TbnS
132 6 subgsubcl SSubGrpYTbn1STM×˙TbnSTbn1-˙TM×˙TbnS
133 74 104 131 132 syl3anc NFinRRingMBsbB0sn0¬n=0n<s+1Tbn1-˙TM×˙TbnS
134 133 ex NFinRRingMBsbB0sn0¬n=0n<s+1Tbn1-˙TM×˙TbnS
135 73 134 syld NFinRRingMBsbB0sn0¬n=0¬n=s+1¬s+1<nTbn1-˙TM×˙TbnS
136 135 impl NFinRRingMBsbB0sn0¬n=0¬n=s+1¬s+1<nTbn1-˙TM×˙TbnS
137 54 136 ifclda NFinRRingMBsbB0sn0¬n=0¬n=s+1ifs+1<n0˙Tbn1-˙TM×˙TbnS
138 53 137 ifclda NFinRRingMBsbB0sn0¬n=0ifn=s+1Tbsifs+1<n0˙Tbn1-˙TM×˙TbnS
139 42 138 ifclda NFinRRingMBsbB0sn0ifn=00˙-˙TM×˙Tb0ifn=s+1Tbsifs+1<n0˙Tbn1-˙TM×˙TbnS
140 139 9 fmptd NFinRRingMBsbB0sG:0S