Metamath Proof Explorer


Theorem chpdmatlem2

Description: Lemma 2 for chpdmat . (Contributed by AV, 18-Aug-2019)

Ref Expression
Hypotheses chpdmat.c C=NCharPlyMatR
chpdmat.p P=Poly1R
chpdmat.a A=NMatR
chpdmat.s S=algScP
chpdmat.b B=BaseA
chpdmat.x X=var1R
chpdmat.0 0˙=0R
chpdmat.g G=mulGrpP
chpdmat.m -˙=-P
chpdmatlem.q Q=NMatP
chpdmatlem.1 1˙=1Q
chpdmatlem.m ·˙=Q
chpdmatlem.z Z=-Q
chpdmatlem.t T=NmatToPolyMatR
Assertion chpdmatlem2 NFinRRingMBiNjNijiMj=0˙iX·˙1˙ZTMj=0P

Proof

Step Hyp Ref Expression
1 chpdmat.c C=NCharPlyMatR
2 chpdmat.p P=Poly1R
3 chpdmat.a A=NMatR
4 chpdmat.s S=algScP
5 chpdmat.b B=BaseA
6 chpdmat.x X=var1R
7 chpdmat.0 0˙=0R
8 chpdmat.g G=mulGrpP
9 chpdmat.m -˙=-P
10 chpdmatlem.q Q=NMatP
11 chpdmatlem.1 1˙=1Q
12 chpdmatlem.m ·˙=Q
13 chpdmatlem.z Z=-Q
14 chpdmatlem.t T=NmatToPolyMatR
15 2 ply1ring RRingPRing
16 15 3ad2ant2 NFinRRingMBPRing
17 16 ad4antr NFinRRingMBiNjNijiMj=0˙PRing
18 1 2 3 4 5 6 7 8 9 10 11 12 chpdmatlem0 NFinRRingX·˙1˙BaseQ
19 18 3adant3 NFinRRingMBX·˙1˙BaseQ
20 19 ad4antr NFinRRingMBiNjNijiMj=0˙X·˙1˙BaseQ
21 14 3 5 2 10 mat2pmatbas NFinRRingMBTMBaseQ
22 21 ad4antr NFinRRingMBiNjNijiMj=0˙TMBaseQ
23 simpr NFinRRingMBiNiN
24 23 anim1i NFinRRingMBiNjNiNjN
25 24 ad2antrr NFinRRingMBiNjNijiMj=0˙iNjN
26 eqid BaseQ=BaseQ
27 10 26 13 9 matsubgcell PRingX·˙1˙BaseQTMBaseQiNjNiX·˙1˙ZTMj=iX·˙1˙j-˙iTMj
28 17 20 22 25 27 syl121anc NFinRRingMBiNjNijiMj=0˙iX·˙1˙ZTMj=iX·˙1˙j-˙iTMj
29 16 ad2antrr NFinRRingMBiNjNPRing
30 eqid BaseP=BaseP
31 6 2 30 vr1cl RRingXBaseP
32 31 3ad2ant2 NFinRRingMBXBaseP
33 2 10 pmatring NFinRRingQRing
34 33 3adant3 NFinRRingMBQRing
35 26 11 ringidcl QRing1˙BaseQ
36 34 35 syl NFinRRingMB1˙BaseQ
37 32 36 jca NFinRRingMBXBaseP1˙BaseQ
38 37 ad2antrr NFinRRingMBiNjNXBaseP1˙BaseQ
39 29 38 24 3jca NFinRRingMBiNjNPRingXBaseP1˙BaseQiNjN
40 39 ad2antrr NFinRRingMBiNjNijiMj=0˙PRingXBaseP1˙BaseQiNjN
41 eqid P=P
42 10 26 30 12 41 matvscacell PRingXBaseP1˙BaseQiNjNiX·˙1˙j=XPi1˙j
43 40 42 syl NFinRRingMBiNjNijiMj=0˙iX·˙1˙j=XPi1˙j
44 43 oveq1d NFinRRingMBiNjNijiMj=0˙iX·˙1˙j-˙iTMj=XPi1˙j-˙iTMj
45 eqid 1P=1P
46 eqid 0P=0P
47 simpll1 NFinRRingMBiNjNNFin
48 23 adantr NFinRRingMBiNjNiN
49 simpr NFinRRingMBiNjNjN
50 10 45 46 47 29 48 49 11 mat1ov NFinRRingMBiNjNi1˙j=ifi=j1P0P
51 ifnefalse ijifi=j1P0P=0P
52 50 51 sylan9eq NFinRRingMBiNjNiji1˙j=0P
53 52 oveq2d NFinRRingMBiNjNijXPi1˙j=XP0P
54 15 31 jca RRingPRingXBaseP
55 54 3ad2ant2 NFinRRingMBPRingXBaseP
56 30 41 46 ringrz PRingXBasePXP0P=0P
57 55 56 syl NFinRRingMBXP0P=0P
58 57 adantr NFinRRingMBiNXP0P=0P
59 58 ad2antrr NFinRRingMBiNjNijXP0P=0P
60 53 59 eqtrd NFinRRingMBiNjNijXPi1˙j=0P
61 60 adantr NFinRRingMBiNjNijiMj=0˙XPi1˙j=0P
62 simpll NFinRRingMBiNjNNFinRRingMB
63 62 24 jca NFinRRingMBiNjNNFinRRingMBiNjN
64 63 ad2antrr NFinRRingMBiNjNijiMj=0˙NFinRRingMBiNjN
65 14 3 5 2 4 mat2pmatvalel NFinRRingMBiNjNiTMj=SiMj
66 64 65 syl NFinRRingMBiNjNijiMj=0˙iTMj=SiMj
67 61 66 oveq12d NFinRRingMBiNjNijiMj=0˙XPi1˙j-˙iTMj=0P-˙SiMj
68 fveq2 iMj=0˙SiMj=S0˙
69 68 adantl NFinRRingMBiNjNijiMj=0˙SiMj=S0˙
70 2 4 7 46 ply1scl0 RRingS0˙=0P
71 70 3ad2ant2 NFinRRingMBS0˙=0P
72 71 ad4antr NFinRRingMBiNjNijiMj=0˙S0˙=0P
73 69 72 eqtrd NFinRRingMBiNjNijiMj=0˙SiMj=0P
74 73 oveq2d NFinRRingMBiNjNijiMj=0˙0P-˙SiMj=0P-˙0P
75 ringgrp PRingPGrp
76 15 75 syl RRingPGrp
77 30 46 grpidcl PGrp0PBaseP
78 76 77 jccir RRingPGrp0PBaseP
79 78 3ad2ant2 NFinRRingMBPGrp0PBaseP
80 30 46 9 grpsubid PGrp0PBaseP0P-˙0P=0P
81 79 80 syl NFinRRingMB0P-˙0P=0P
82 81 ad4antr NFinRRingMBiNjNijiMj=0˙0P-˙0P=0P
83 67 74 82 3eqtrd NFinRRingMBiNjNijiMj=0˙XPi1˙j-˙iTMj=0P
84 28 44 83 3eqtrd NFinRRingMBiNjNijiMj=0˙iX·˙1˙ZTMj=0P