Metamath Proof Explorer


Theorem chpidmat

Description: The characteristic polynomial of the identity matrix. (Contributed by AV, 19-Aug-2019)

Ref Expression
Hypotheses chp0mat.c C=NCharPlyMatR
chp0mat.p P=Poly1R
chp0mat.a A=NMatR
chp0mat.x X=var1R
chp0mat.g G=mulGrpP
chp0mat.m ×˙=G
chpidmat.i I=1A
chpidmat.s S=algScP
chpidmat.1 1˙=1R
chpidmat.m -˙=-P
Assertion chpidmat NFinRCRingCI=N×˙X-˙S1˙

Proof

Step Hyp Ref Expression
1 chp0mat.c C=NCharPlyMatR
2 chp0mat.p P=Poly1R
3 chp0mat.a A=NMatR
4 chp0mat.x X=var1R
5 chp0mat.g G=mulGrpP
6 chp0mat.m ×˙=G
7 chpidmat.i I=1A
8 chpidmat.s S=algScP
9 chpidmat.1 1˙=1R
10 chpidmat.m -˙=-P
11 simpl NFinRCRingNFin
12 simpr NFinRCRingRCRing
13 crngring RCRingRRing
14 3 matring NFinRRingARing
15 13 14 sylan2 NFinRCRingARing
16 eqid BaseA=BaseA
17 16 7 ringidcl ARingIBaseA
18 15 17 syl NFinRCRingIBaseA
19 eqid 0R=0R
20 11 ad2antrr NFinRCRingiNjNijNFin
21 13 adantl NFinRCRingRRing
22 21 ad2antrr NFinRCRingiNjNijRRing
23 simplrl NFinRCRingiNjNijiN
24 simplrr NFinRCRingiNjNijjN
25 3 9 19 20 22 23 24 7 mat1ov NFinRCRingiNjNijiIj=ifi=j1˙0R
26 ifnefalse ijifi=j1˙0R=0R
27 26 adantl NFinRCRingiNjNijifi=j1˙0R=0R
28 25 27 eqtrd NFinRCRingiNjNijiIj=0R
29 28 ex NFinRCRingiNjNijiIj=0R
30 29 ralrimivva NFinRCRingiNjNijiIj=0R
31 eqid -P=-P
32 1 2 3 8 16 4 19 5 31 chpdmat NFinRCRingIBaseAiNjNijiIj=0RCI=GkNX-PSkIk
33 11 12 18 30 32 syl31anc NFinRCRingCI=GkNX-PSkIk
34 11 adantr NFinRCRingkNNFin
35 21 adantr NFinRCRingkNRRing
36 simpr NFinRCRingkNkN
37 3 9 19 34 35 36 36 7 mat1ov NFinRCRingkNkIk=ifk=k1˙0R
38 eqid k=k
39 38 iftruei ifk=k1˙0R=1˙
40 37 39 eqtrdi NFinRCRingkNkIk=1˙
41 40 fveq2d NFinRCRingkNSkIk=S1˙
42 41 oveq2d NFinRCRingkNX-PSkIk=X-PS1˙
43 42 mpteq2dva NFinRCRingkNX-PSkIk=kNX-PS1˙
44 43 oveq2d NFinRCRingGkNX-PSkIk=GkNX-PS1˙
45 2 ply1crng RCRingPCRing
46 5 crngmgp PCRingGCMnd
47 cmnmnd GCMndGMnd
48 45 46 47 3syl RCRingGMnd
49 48 adantl NFinRCRingGMnd
50 2 ply1ring RRingPRing
51 ringgrp PRingPGrp
52 50 51 syl RRingPGrp
53 eqid BaseP=BaseP
54 4 2 53 vr1cl RRingXBaseP
55 eqid 1P=1P
56 2 8 9 55 ply1scl1 RRingS1˙=1P
57 53 55 ringidcl PRing1PBaseP
58 50 57 syl RRing1PBaseP
59 56 58 eqeltrd RRingS1˙BaseP
60 52 54 59 3jca RRingPGrpXBasePS1˙BaseP
61 13 60 syl RCRingPGrpXBasePS1˙BaseP
62 61 adantl NFinRCRingPGrpXBasePS1˙BaseP
63 53 31 grpsubcl PGrpXBasePS1˙BasePX-PS1˙BaseP
64 62 63 syl NFinRCRingX-PS1˙BaseP
65 5 53 mgpbas BaseP=BaseG
66 64 65 eleqtrdi NFinRCRingX-PS1˙BaseG
67 eqid BaseG=BaseG
68 67 6 gsumconst GMndNFinX-PS1˙BaseGGkNX-PS1˙=N×˙X-PS1˙
69 10 eqcomi -P=-˙
70 69 oveqi X-PS1˙=X-˙S1˙
71 70 oveq2i N×˙X-PS1˙=N×˙X-˙S1˙
72 68 71 eqtrdi GMndNFinX-PS1˙BaseGGkNX-PS1˙=N×˙X-˙S1˙
73 49 11 66 72 syl3anc NFinRCRingGkNX-PS1˙=N×˙X-˙S1˙
74 44 73 eqtrd NFinRCRingGkNX-PSkIk=N×˙X-˙S1˙
75 33 74 eqtrd NFinRCRingCI=N×˙X-˙S1˙