Metamath Proof Explorer


Theorem climsuse

Description: A subsequence G of a converging sequence F , converges to the same limit. I is the strictly increasing and it is used to index the subsequence. (Contributed by Glauco Siliprandi, 29-Jun-2017)

Ref Expression
Hypotheses climsuse.1 kφ
climsuse.3 _kF
climsuse.2 _kG
climsuse.4 _kI
climsuse.5 Z=M
climsuse.6 φM
climsuse.7 φFX
climsuse.8 φkZFk
climsuse.9 φFA
climsuse.10 φIMZ
climsuse.11 φkZIk+1Ik+1
climsuse.12 φGY
climsuse.13 φkZGk=FIk
Assertion climsuse φGA

Proof

Step Hyp Ref Expression
1 climsuse.1 kφ
2 climsuse.3 _kF
3 climsuse.2 _kG
4 climsuse.4 _kI
5 climsuse.5 Z=M
6 climsuse.6 φM
7 climsuse.7 φFX
8 climsuse.8 φkZFk
9 climsuse.9 φFA
10 climsuse.10 φIMZ
11 climsuse.11 φkZIk+1Ik+1
12 climsuse.12 φGY
13 climsuse.13 φkZGk=FIk
14 climcl FAA
15 9 14 syl φA
16 nfv xφ
17 simpllr φx+jijFiFiA<xMjj
18 6 ad4antr φx+jijFiFiA<x¬MjM
19 17 18 ifclda φx+jijFiFiA<xifMjjM
20 nfv iφx+j
21 nfra1 iijFiFiA<x
22 20 21 nfan iφx+jijFiFiA<x
23 simp-4l φx+jijFiFiA<xiifMjjMφ
24 simpllr φx+jijFiFiA<xiifMjjMj
25 23 24 jca φx+jijFiFiA<xiifMjjMφj
26 simpr φx+jijFiFiA<xiifMjjMiifMjjM
27 simpr φjMjMj
28 6 anim1i φjMj
29 28 adantr φjMjMj
30 eluz MjjMMj
31 29 30 syl φjMjjMMj
32 27 31 mpbird φjMjjM
33 simpll φj¬Mjφ
34 uzid MMM
35 33 6 34 3syl φj¬MjMM
36 32 35 ifclda φjifMjjMM
37 uzss ifMjjMMifMjjMM
38 36 37 syl φjifMjjMM
39 38 5 sseqtrrdi φjifMjjMZ
40 39 sseld φjiifMjjMiZ
41 25 26 40 sylc φx+jijFiFiA<xiifMjjMiZ
42 nfv kiZ
43 1 42 nfan kφiZ
44 nfcv _ki
45 3 44 nffv _kGi
46 4 44 nffv _kIi
47 2 46 nffv _kFIi
48 45 47 nfeq kGi=FIi
49 43 48 nfim kφiZGi=FIi
50 eleq1 k=ikZiZ
51 50 anbi2d k=iφkZφiZ
52 fveq2 k=iGk=Gi
53 2fveq3 k=iFIk=FIi
54 52 53 eqeq12d k=iGk=FIkGi=FIi
55 51 54 imbi12d k=iφkZGk=FIkφiZGi=FIi
56 49 55 13 chvarfv φiZGi=FIi
57 5 eleq2i iZiM
58 57 biimpi iZiM
59 58 adantl φiZiM
60 uzss iMiM
61 59 60 syl φiZiM
62 nfcv _ki+1
63 4 62 nffv _kIi+1
64 nfcv _k
65 nfcv _k+
66 nfcv _k1
67 46 65 66 nfov _kIi+1
68 64 67 nffv _kIi+1
69 63 68 nfel kIi+1Ii+1
70 43 69 nfim kφiZIi+1Ii+1
71 fvoveq1 k=iIk+1=Ii+1
72 fveq2 k=iIk=Ii
73 72 fvoveq1d k=iIk+1=Ii+1
74 71 73 eleq12d k=iIk+1Ik+1Ii+1Ii+1
75 51 74 imbi12d k=iφkZIk+1Ik+1φiZIi+1Ii+1
76 70 75 11 chvarfv φiZIi+1Ii+1
77 5 6 10 76 climsuselem1 φiZIii
78 61 77 sseldd φiZIiM
79 78 5 eleqtrrdi φiZIiZ
80 79 ex φiZIiZ
81 80 imdistani φiZφIiZ
82 42 nfci _kZ
83 46 82 nfel kIiZ
84 1 83 nfan kφIiZ
85 47 nfel1 kFIi
86 84 85 nfim kφIiZFIi
87 eleq1 k=IikZIiZ
88 87 anbi2d k=IiφkZφIiZ
89 fveq2 k=IiFk=FIi
90 89 eleq1d k=IiFkFIi
91 88 90 imbi12d k=IiφkZFkφIiZFIi
92 46 86 91 8 vtoclgf IiZφIiZFIi
93 79 81 92 sylc φiZFIi
94 56 93 eqeltrd φiZGi
95 23 41 94 syl2anc φx+jijFiFiA<xiifMjjMGi
96 23 41 56 syl2anc φx+jijFiFiA<xiifMjjMGi=FIi
97 96 fvoveq1d φx+jijFiFiA<xiifMjjMGiA=FIiA
98 fveq2 i=hFi=Fh
99 98 eleq1d i=hFiFh
100 98 fvoveq1d i=hFiA=FhA
101 100 breq1d i=hFiA<xFhA<x
102 99 101 anbi12d i=hFiFiA<xFhFhA<x
103 102 cbvralvw ijFiFiA<xhjFhFhA<x
104 103 biimpi ijFiFiA<xhjFhFhA<x
105 104 ad2antlr φx+jijFiFiA<xiifMjjMhjFhFhA<x
106 zre jj
107 106 3ad2ant2 φjiifMjjMj
108 simp3 φjiifMjjMiifMjjM
109 eluzelz iifMjjMi
110 zre ii
111 108 109 110 3syl φjiifMjjMi
112 simp1 φjiifMjjMφ
113 6 zred φM
114 112 113 syl φjiifMjjMM
115 simpl2 φjiifMjjMMjj
116 115 zred φjiifMjjMMjj
117 114 adantr φjiifMjjM¬MjM
118 116 117 ifclda φjiifMjjMifMjjM
119 max1 MjMifMjjM
120 114 107 119 syl2anc φjiifMjjMMifMjjM
121 eluzle iifMjjMifMjjMi
122 121 3ad2ant3 φjiifMjjMifMjjMi
123 114 118 111 120 122 letrd φjiifMjjMMi
124 112 6 syl φjiifMjjMM
125 109 3ad2ant3 φjiifMjjMi
126 eluz MiiMMi
127 124 125 126 syl2anc φjiifMjjMiMMi
128 123 127 mpbird φjiifMjjMiM
129 128 5 eleqtrrdi φjiifMjjMiZ
130 112 129 jca φjiifMjjMφiZ
131 eluzelre IiMIi
132 130 78 131 3syl φjiifMjjMIi
133 max2 MjjifMjjM
134 114 107 133 syl2anc φjiifMjjMjifMjjM
135 107 118 111 134 122 letrd φjiifMjjMji
136 eluzle IiiiIi
137 130 77 136 3syl φjiifMjjMiIi
138 107 111 132 135 137 letrd φjiifMjjMjIi
139 simp2 φjiifMjjMj
140 eluzelz IiiIi
141 130 77 140 3syl φjiifMjjMIi
142 eluz jIiIijjIi
143 139 141 142 syl2anc φjiifMjjMIijjIi
144 138 143 mpbird φjiifMjjMIij
145 23 24 26 144 syl3anc φx+jijFiFiA<xiifMjjMIij
146 fveq2 h=IiFh=FIi
147 146 eleq1d h=IiFhFIi
148 146 fvoveq1d h=IiFhA=FIiA
149 148 breq1d h=IiFhA<xFIiA<x
150 147 149 anbi12d h=IiFhFhA<xFIiFIiA<x
151 150 rspccva hjFhFhA<xIijFIiFIiA<x
152 151 simprd hjFhFhA<xIijFIiA<x
153 105 145 152 syl2anc φx+jijFiFiA<xiifMjjMFIiA<x
154 97 153 eqbrtrd φx+jijFiFiA<xiifMjjMGiA<x
155 95 154 jca φx+jijFiFiA<xiifMjjMGiGiA<x
156 155 ex φx+jijFiFiA<xiifMjjMGiGiA<x
157 22 156 ralrimi φx+jijFiFiA<xiifMjjMGiGiA<x
158 fveq2 l=ifMjjMl=ifMjjM
159 158 raleqdv l=ifMjjMilGiGiA<xiifMjjMGiGiA<x
160 159 rspcev ifMjjMiifMjjMGiGiA<xlilGiGiA<x
161 19 157 160 syl2anc φx+jijFiFiA<xlilGiGiA<x
162 eqidd φiFi=Fi
163 7 162 clim φFAAx+jijFiFiA<x
164 9 163 mpbid φAx+jijFiFiA<x
165 164 simprd φx+jijFiFiA<x
166 165 r19.21bi φx+jijFiFiA<x
167 161 166 r19.29a φx+lilGiGiA<x
168 167 ex φx+lilGiGiA<x
169 16 168 ralrimi φx+lilGiGiA<x
170 eqidd φiGi=Gi
171 12 170 clim φGAAx+lilGiGiA<x
172 15 169 171 mpbir2and φGA