Metamath Proof Explorer


Theorem clssubg

Description: The closure of a subgroup in a topological group is a subgroup. (Contributed by Mario Carneiro, 17-Sep-2015)

Ref Expression
Hypothesis subgntr.h J=TopOpenG
Assertion clssubg GTopGrpSSubGrpGclsJSSubGrpG

Proof

Step Hyp Ref Expression
1 subgntr.h J=TopOpenG
2 eqid BaseG=BaseG
3 1 2 tgptopon GTopGrpJTopOnBaseG
4 3 adantr GTopGrpSSubGrpGJTopOnBaseG
5 topontop JTopOnBaseGJTop
6 4 5 syl GTopGrpSSubGrpGJTop
7 2 subgss SSubGrpGSBaseG
8 7 adantl GTopGrpSSubGrpGSBaseG
9 toponuni JTopOnBaseGBaseG=J
10 4 9 syl GTopGrpSSubGrpGBaseG=J
11 8 10 sseqtrd GTopGrpSSubGrpGSJ
12 eqid J=J
13 12 clsss3 JTopSJclsJSJ
14 6 11 13 syl2anc GTopGrpSSubGrpGclsJSJ
15 14 10 sseqtrrd GTopGrpSSubGrpGclsJSBaseG
16 12 sscls JTopSJSclsJS
17 6 11 16 syl2anc GTopGrpSSubGrpGSclsJS
18 eqid 0G=0G
19 18 subg0cl SSubGrpG0GS
20 19 adantl GTopGrpSSubGrpG0GS
21 20 ne0d GTopGrpSSubGrpGS
22 ssn0 SclsJSSclsJS
23 17 21 22 syl2anc GTopGrpSSubGrpGclsJS
24 df-ov x-Gy=-Gxy
25 opelxpi xclsJSyclsJSxyclsJS×clsJS
26 txcls JTopOnBaseGJTopOnBaseGSBaseGSBaseGclsJ×tJS×S=clsJS×clsJS
27 4 4 8 8 26 syl22anc GTopGrpSSubGrpGclsJ×tJS×S=clsJS×clsJS
28 txtopon JTopOnBaseGJTopOnBaseGJ×tJTopOnBaseG×BaseG
29 4 4 28 syl2anc GTopGrpSSubGrpGJ×tJTopOnBaseG×BaseG
30 topontop J×tJTopOnBaseG×BaseGJ×tJTop
31 29 30 syl GTopGrpSSubGrpGJ×tJTop
32 cnvimass -G-1Sdom-G
33 tgpgrp GTopGrpGGrp
34 33 adantr GTopGrpSSubGrpGGGrp
35 eqid -G=-G
36 2 35 grpsubf GGrp-G:BaseG×BaseGBaseG
37 34 36 syl GTopGrpSSubGrpG-G:BaseG×BaseGBaseG
38 32 37 fssdm GTopGrpSSubGrpG-G-1SBaseG×BaseG
39 toponuni J×tJTopOnBaseG×BaseGBaseG×BaseG=J×tJ
40 29 39 syl GTopGrpSSubGrpGBaseG×BaseG=J×tJ
41 38 40 sseqtrd GTopGrpSSubGrpG-G-1SJ×tJ
42 35 subgsubcl SSubGrpGxSySx-GyS
43 42 3expb SSubGrpGxSySx-GyS
44 43 ralrimivva SSubGrpGxSySx-GyS
45 fveq2 z=xy-Gz=-Gxy
46 45 24 eqtr4di z=xy-Gz=x-Gy
47 46 eleq1d z=xy-GzSx-GyS
48 47 ralxp zS×S-GzSxSySx-GyS
49 44 48 sylibr SSubGrpGzS×S-GzS
50 49 adantl GTopGrpSSubGrpGzS×S-GzS
51 37 ffund GTopGrpSSubGrpGFun-G
52 xpss12 SBaseGSBaseGS×SBaseG×BaseG
53 8 8 52 syl2anc GTopGrpSSubGrpGS×SBaseG×BaseG
54 37 fdmd GTopGrpSSubGrpGdom-G=BaseG×BaseG
55 53 54 sseqtrrd GTopGrpSSubGrpGS×Sdom-G
56 funimass5 Fun-GS×Sdom-GS×S-G-1SzS×S-GzS
57 51 55 56 syl2anc GTopGrpSSubGrpGS×S-G-1SzS×S-GzS
58 50 57 mpbird GTopGrpSSubGrpGS×S-G-1S
59 eqid J×tJ=J×tJ
60 59 clsss J×tJTop-G-1SJ×tJS×S-G-1SclsJ×tJS×SclsJ×tJ-G-1S
61 31 41 58 60 syl3anc GTopGrpSSubGrpGclsJ×tJS×SclsJ×tJ-G-1S
62 1 35 tgpsubcn GTopGrp-GJ×tJCnJ
63 62 adantr GTopGrpSSubGrpG-GJ×tJCnJ
64 12 cncls2i -GJ×tJCnJSJclsJ×tJ-G-1S-G-1clsJS
65 63 11 64 syl2anc GTopGrpSSubGrpGclsJ×tJ-G-1S-G-1clsJS
66 61 65 sstrd GTopGrpSSubGrpGclsJ×tJS×S-G-1clsJS
67 27 66 eqsstrrd GTopGrpSSubGrpGclsJS×clsJS-G-1clsJS
68 67 sselda GTopGrpSSubGrpGxyclsJS×clsJSxy-G-1clsJS
69 25 68 sylan2 GTopGrpSSubGrpGxclsJSyclsJSxy-G-1clsJS
70 33 ad2antrr GTopGrpSSubGrpGxclsJSyclsJSGGrp
71 ffn -G:BaseG×BaseGBaseG-GFnBaseG×BaseG
72 elpreima -GFnBaseG×BaseGxy-G-1clsJSxyBaseG×BaseG-GxyclsJS
73 70 36 71 72 4syl GTopGrpSSubGrpGxclsJSyclsJSxy-G-1clsJSxyBaseG×BaseG-GxyclsJS
74 69 73 mpbid GTopGrpSSubGrpGxclsJSyclsJSxyBaseG×BaseG-GxyclsJS
75 74 simprd GTopGrpSSubGrpGxclsJSyclsJS-GxyclsJS
76 24 75 eqeltrid GTopGrpSSubGrpGxclsJSyclsJSx-GyclsJS
77 76 ralrimivva GTopGrpSSubGrpGxclsJSyclsJSx-GyclsJS
78 2 35 issubg4 GGrpclsJSSubGrpGclsJSBaseGclsJSxclsJSyclsJSx-GyclsJS
79 34 78 syl GTopGrpSSubGrpGclsJSSubGrpGclsJSBaseGclsJSxclsJSyclsJSx-GyclsJS
80 15 23 77 79 mpbir3and GTopGrpSSubGrpGclsJSSubGrpG