Metamath Proof Explorer


Theorem cncficcgt0

Description: A the absolute value of a continuous function on a closed interval, that is never 0, has a strictly positive lower bound. (Contributed by Glauco Siliprandi, 11-Dec-2019)

Ref Expression
Hypotheses cncficcgt0.f F=xABC
cncficcgt0.a φA
cncficcgt0.b φB
cncficcgt0.aleb φAB
cncficcgt0.fcn φF:ABcn0
Assertion cncficcgt0 φy+xAByC

Proof

Step Hyp Ref Expression
1 cncficcgt0.f F=xABC
2 cncficcgt0.a φA
3 cncficcgt0.b φB
4 cncficcgt0.aleb φAB
5 cncficcgt0.fcn φF:ABcn0
6 cncff F:ABcn0F:AB0
7 ffun F:AB0FunF
8 5 6 7 3syl φFunF
9 8 adantr φcABFunF
10 simpr φcABcAB
11 5 6 syl φF:AB0
12 11 fdmd φdomF=AB
13 12 eqcomd φAB=domF
14 13 adantr φcABAB=domF
15 10 14 eleqtrd φcABcdomF
16 fvco FunFcdomFabsFc=Fc
17 9 15 16 syl2anc φcABabsFc=Fc
18 11 ffvelcdmda φcABFc0
19 18 eldifad φcABFc
20 19 recnd φcABFc
21 eldifsni Fc0Fc0
22 18 21 syl φcABFc0
23 20 22 absrpcld φcABFc+
24 17 23 eqeltrd φcABabsFc+
25 24 adantr φcABdABabsFcabsFdabsFc+
26 nfv xφcAB
27 nfcv _xAB
28 nfcv _xabs
29 nfmpt1 _xxABC
30 1 29 nfcxfr _xF
31 28 30 nfco _xabsF
32 nfcv _xc
33 31 32 nffv _xabsFc
34 nfcv _x
35 nfcv _xd
36 31 35 nffv _xabsFd
37 33 34 36 nfbr xabsFcabsFd
38 27 37 nfralw xdABabsFcabsFd
39 26 38 nfan xφcABdABabsFcabsFd
40 fveq2 d=xabsFd=absFx
41 40 breq2d d=xabsFcabsFdabsFcabsFx
42 41 rspccva dABabsFcabsFdxABabsFcabsFx
43 42 adantll φcABdABabsFcabsFdxABabsFcabsFx
44 absf abs:
45 44 a1i φabs:
46 difss 0
47 ax-resscn
48 46 47 sstri 0
49 48 a1i φ0
50 11 49 fssd φF:AB
51 fcompt abs:F:ABabsF=zABFz
52 45 50 51 syl2anc φabsF=zABFz
53 nfcv _xz
54 30 53 nffv _xFz
55 28 54 nffv _xFz
56 nfcv _zFx
57 fveq2 z=xFz=Fx
58 57 fveq2d z=xFz=Fx
59 55 56 58 cbvmpt zABFz=xABFx
60 59 a1i φzABFz=xABFx
61 1 a1i φF=xABC
62 61 11 feq1dd φxABC:AB0
63 62 fvmptelcdm φxABC0
64 61 63 fvmpt2d φxABFx=C
65 64 fveq2d φxABFx=C
66 65 mpteq2dva φxABFx=xABC
67 52 60 66 3eqtrd φabsF=xABC
68 48 63 sselid φxABC
69 68 abscld φxABC
70 67 69 fvmpt2d φxABabsFx=C
71 70 ad4ant14 φcABdABabsFcabsFdxABabsFx=C
72 43 71 breqtrd φcABdABabsFcabsFdxABabsFcC
73 72 ex φcABdABabsFcabsFdxABabsFcC
74 39 73 ralrimi φcABdABabsFcabsFdxABabsFcC
75 33 nfeq2 xy=absFc
76 breq1 y=absFcyCabsFcC
77 75 76 ralbid y=absFcxAByCxABabsFcC
78 77 rspcev absFc+xABabsFcCy+xAByC
79 25 74 78 syl2anc φcABdABabsFcabsFdy+xAByC
80 ssidd φ
81 cncfss 0ABcn0ABcn
82 49 80 81 syl2anc φABcn0ABcn
83 82 5 sseldd φF:ABcn
84 abscncf abs:cn
85 84 a1i φabs:cn
86 83 85 cncfco φabsF:ABcn
87 2 3 4 86 evthicc φaABbABabsFbabsFacABdABabsFcabsFd
88 87 simprd φcABdABabsFcabsFd
89 79 88 r19.29a φy+xAByC