Metamath Proof Explorer


Theorem cncongr1

Description: One direction of the bicondition in cncongr . Theorem 5.4 in ApostolNT p. 109. (Contributed by AV, 13-Jul-2021)

Ref Expression
Assertion cncongr1 ABCNM=NCgcdNACmodN=BCmodNAmodM=BmodM

Proof

Step Hyp Ref Expression
1 zmulcl ACAC
2 1 3adant2 ABCAC
3 zmulcl BCBC
4 3 3adant1 ABCBC
5 simpl NM=NCgcdNN
6 congr ACBCNACmodN=BCmodNkk N=ACBC
7 2 4 5 6 syl2an3an ABCNM=NCgcdNACmodN=BCmodNkk N=ACBC
8 simpl CNC
9 nnz NN
10 nnne0 NN0
11 9 10 jca NNN0
12 11 adantl CNNN0
13 eqidd CNCgcdN=CgcdN
14 8 12 13 3jca CNCNN0CgcdN=CgcdN
15 14 ex CNCNN0CgcdN=CgcdN
16 15 3ad2ant3 ABCNCNN0CgcdN=CgcdN
17 16 com12 NABCCNN0CgcdN=CgcdN
18 17 adantr NM=NCgcdNABCCNN0CgcdN=CgcdN
19 18 impcom ABCNM=NCgcdNCNN0CgcdN=CgcdN
20 divgcdcoprmex CNN0CgcdN=CgcdNrsC=CgcdNrN=CgcdNsrgcds=1
21 19 20 syl ABCNM=NCgcdNrsC=CgcdNrN=CgcdNsrgcds=1
22 21 adantr ABCNM=NCgcdNkrsC=CgcdNrN=CgcdNsrgcds=1
23 oveq2 N=CgcdNsk N=kCgcdNs
24 23 3ad2ant2 C=CgcdNrN=CgcdNsrgcds=1k N=kCgcdNs
25 24 adantl ABCNM=NCgcdNkrsC=CgcdNrN=CgcdNsrgcds=1k N=kCgcdNs
26 oveq2 C=CgcdNrAC=ACgcdNr
27 oveq2 C=CgcdNrBC=BCgcdNr
28 26 27 oveq12d C=CgcdNrACBC=ACgcdNrBCgcdNr
29 28 3ad2ant1 C=CgcdNrN=CgcdNsrgcds=1ACBC=ACgcdNrBCgcdNr
30 29 adantl ABCNM=NCgcdNkrsC=CgcdNrN=CgcdNsrgcds=1ACBC=ACgcdNrBCgcdNr
31 25 30 eqeq12d ABCNM=NCgcdNkrsC=CgcdNrN=CgcdNsrgcds=1k N=ACBCkCgcdNs=ACgcdNrBCgcdNr
32 simpr ABCNM=NCgcdNkk
33 32 zcnd ABCNM=NCgcdNkk
34 33 adantr ABCNM=NCgcdNkrsk
35 simp3 ABCC
36 35 adantr ABCNM=NCgcdNC
37 9 adantr NM=NCgcdNN
38 37 adantl ABCNM=NCgcdNN
39 36 38 gcdcld ABCNM=NCgcdNCgcdN0
40 39 nn0cnd ABCNM=NCgcdNCgcdN
41 40 ad2antrr ABCNM=NCgcdNkrsCgcdN
42 simpr rss
43 42 zcnd rss
44 43 adantl ABCNM=NCgcdNkrss
45 34 41 44 mul12d ABCNM=NCgcdNkrskCgcdNs=CgcdNks
46 simp1 ABCA
47 46 zcnd ABCA
48 47 adantr ABCNM=NCgcdNA
49 48 ad2antrr ABCNM=NCgcdNkrsA
50 35 ad2antrr ABCNM=NCgcdNkC
51 5 nnzd NM=NCgcdNN
52 51 adantl ABCNM=NCgcdNN
53 52 adantr ABCNM=NCgcdNkN
54 50 53 gcdcld ABCNM=NCgcdNkCgcdN0
55 54 nn0cnd ABCNM=NCgcdNkCgcdN
56 55 adantr ABCNM=NCgcdNkrsCgcdN
57 simpl rsr
58 57 zcnd rsr
59 58 adantl ABCNM=NCgcdNkrsr
60 49 56 59 mul12d ABCNM=NCgcdNkrsACgcdNr=CgcdNAr
61 simp2 ABCB
62 61 zcnd ABCB
63 62 adantr ABCNM=NCgcdNB
64 63 ad2antrr ABCNM=NCgcdNkrsB
65 36 52 gcdcld ABCNM=NCgcdNCgcdN0
66 65 nn0cnd ABCNM=NCgcdNCgcdN
67 66 ad2antrr ABCNM=NCgcdNkrsCgcdN
68 64 67 59 mul12d ABCNM=NCgcdNkrsBCgcdNr=CgcdNBr
69 60 68 oveq12d ABCNM=NCgcdNkrsACgcdNrBCgcdNr=CgcdNArCgcdNBr
70 45 69 eqeq12d ABCNM=NCgcdNkrskCgcdNs=ACgcdNrBCgcdNrCgcdNks=CgcdNArCgcdNBr
71 46 adantr ABCNM=NCgcdNA
72 71 ad2antrr ABCNM=NCgcdNkrsA
73 57 adantl ABCNM=NCgcdNkrsr
74 72 73 zmulcld ABCNM=NCgcdNkrsAr
75 74 zcnd ABCNM=NCgcdNkrsAr
76 61 adantr ABCNM=NCgcdNB
77 76 ad2antrr ABCNM=NCgcdNkrsB
78 77 73 zmulcld ABCNM=NCgcdNkrsBr
79 78 zcnd ABCNM=NCgcdNkrsBr
80 67 75 79 subdid ABCNM=NCgcdNkrsCgcdNArBr=CgcdNArCgcdNBr
81 80 eqcomd ABCNM=NCgcdNkrsCgcdNArCgcdNBr=CgcdNArBr
82 81 eqeq2d ABCNM=NCgcdNkrsCgcdNks=CgcdNArCgcdNBrCgcdNks=CgcdNArBr
83 32 adantr ABCNM=NCgcdNkrsk
84 42 adantl ABCNM=NCgcdNkrss
85 83 84 zmulcld ABCNM=NCgcdNkrsks
86 85 zcnd ABCNM=NCgcdNkrsks
87 simpl ABA
88 87 57 anim12i ABrsAr
89 zmulcl ArAr
90 88 89 syl ABrsAr
91 simpr ABB
92 91 57 anim12i ABrsBr
93 zmulcl BrBr
94 92 93 syl ABrsBr
95 90 94 zsubcld ABrsArBr
96 95 zcnd ABrsArBr
97 96 ex ABrsArBr
98 97 3adant3 ABCrsArBr
99 98 ad2antrr ABCNM=NCgcdNkrsArBr
100 99 imp ABCNM=NCgcdNkrsArBr
101 10 adantr NM=NCgcdNN0
102 101 adantl ABCNM=NCgcdNN0
103 gcd2n0cl CNN0CgcdN
104 36 52 102 103 syl3anc ABCNM=NCgcdNCgcdN
105 nnne0 CgcdNCgcdN0
106 104 105 syl ABCNM=NCgcdNCgcdN0
107 106 ad2antrr ABCNM=NCgcdNkrsCgcdN0
108 86 100 67 107 mulcand ABCNM=NCgcdNkrsCgcdNks=CgcdNArBrks=ArBr
109 70 82 108 3bitrd ABCNM=NCgcdNkrskCgcdNs=ACgcdNrBCgcdNrks=ArBr
110 109 adantr ABCNM=NCgcdNkrsC=CgcdNrN=CgcdNsrgcds=1kCgcdNs=ACgcdNrBCgcdNrks=ArBr
111 zcn AA
112 zcn BB
113 111 112 anim12i ABAB
114 113 3adant3 ABCAB
115 114 ad2antrr ABCNM=NCgcdNkAB
116 115 58 anim12i ABCNM=NCgcdNkrsABr
117 df-3an ABrABr
118 116 117 sylibr ABCNM=NCgcdNkrsABr
119 subdir ABrABr=ArBr
120 118 119 syl ABCNM=NCgcdNkrsABr=ArBr
121 120 eqcomd ABCNM=NCgcdNkrsArBr=ABr
122 121 adantr ABCNM=NCgcdNkrsC=CgcdNrN=CgcdNsrgcds=1ArBr=ABr
123 122 eqeq2d ABCNM=NCgcdNkrsC=CgcdNrN=CgcdNsrgcds=1ks=ArBrks=ABr
124 5 nncnd NM=NCgcdNN
125 124 adantl ABCNM=NCgcdNN
126 125 ad2antrr ABCNM=NCgcdNkrsN
127 84 zcnd ABCNM=NCgcdNkrss
128 66 106 jca ABCNM=NCgcdNCgcdNCgcdN0
129 128 ad2antrr ABCNM=NCgcdNkrsCgcdNCgcdN0
130 divmul2 NsCgcdNCgcdN0NCgcdN=sN=CgcdNs
131 126 127 129 130 syl3anc ABCNM=NCgcdNkrsNCgcdN=sN=CgcdNs
132 simpll ABCNM=NCgcdNkrsNCgcdN=sABCNM=NCgcdNk
133 73 adantr ABCNM=NCgcdNkrsNCgcdN=sr
134 5 adantl ABCNM=NCgcdNN
135 134 36 jca ABCNM=NCgcdNNC
136 divgcdnnr NCNCgcdN
137 135 136 syl ABCNM=NCgcdNNCgcdN
138 137 adantr ABCNM=NCgcdNkNCgcdN
139 138 ad2antrr ABCNM=NCgcdNkrsNCgcdN=sNCgcdN
140 eleq1 s=NCgcdNsNCgcdN
141 140 eqcoms NCgcdN=ssNCgcdN
142 141 adantl ABCNM=NCgcdNkrsNCgcdN=ssNCgcdN
143 139 142 mpbird ABCNM=NCgcdNkrsNCgcdN=ss
144 133 143 jca ABCNM=NCgcdNkrsNCgcdN=srs
145 132 144 jca ABCNM=NCgcdNkrsNCgcdN=sABCNM=NCgcdNkrs
146 simpr ABCNM=NCgcdNkrsNCgcdN=sNCgcdN=s
147 145 146 jca ABCNM=NCgcdNkrsNCgcdN=sABCNM=NCgcdNkrsNCgcdN=s
148 nnz ss
149 148 adantl rss
150 149 anim2i krsks
151 150 adantl ABkrsks
152 dvdsmul2 kssks
153 151 152 syl ABkrssks
154 breq2 ks=ABrskssABr
155 zsubcl ABAB
156 155 zcnd ABAB
157 156 adantr ABkrsAB
158 zcn rr
159 158 adantr rsr
160 159 adantl krsr
161 160 adantl ABkrsr
162 157 161 mulcomd ABkrsABr=rAB
163 162 breq2d ABkrssABrsrAB
164 148 anim2i rsrs
165 gcdcom rsrgcds=sgcdr
166 164 165 syl rsrgcds=sgcdr
167 166 eqeq1d rsrgcds=1sgcdr=1
168 167 adantl krsrgcds=1sgcdr=1
169 168 adantl ABkrsrgcds=1sgcdr=1
170 164 adantl krsrs
171 170 ancomd krssr
172 155 171 anim12i ABkrsABsr
173 172 ancomd ABkrssrAB
174 df-3an srABsrAB
175 173 174 sylibr ABkrssrAB
176 coprmdvds srABsrABsgcdr=1sAB
177 175 176 syl ABkrssrABsgcdr=1sAB
178 simpr rss
179 178 adantl krss
180 179 anim2i ABkrsABs
181 180 ancomd ABkrssAB
182 3anass sABsAB
183 181 182 sylibr ABkrssAB
184 moddvds sABAmods=BmodssAB
185 183 184 syl ABkrsAmods=BmodssAB
186 177 185 sylibrd ABkrssrABsgcdr=1Amods=Bmods
187 186 expcomd ABkrssgcdr=1srABAmods=Bmods
188 169 187 sylbid ABkrsrgcds=1srABAmods=Bmods
189 188 com23 ABkrssrABrgcds=1Amods=Bmods
190 163 189 sylbid ABkrssABrrgcds=1Amods=Bmods
191 190 com3l sABrrgcds=1ABkrsAmods=Bmods
192 154 191 syl6bi ks=ABrsksrgcds=1ABkrsAmods=Bmods
193 192 com14 ABkrssksrgcds=1ks=ABrAmods=Bmods
194 153 193 mpd ABkrsrgcds=1ks=ABrAmods=Bmods
195 194 ex ABkrsrgcds=1ks=ABrAmods=Bmods
196 195 3adant3 ABCkrsrgcds=1ks=ABrAmods=Bmods
197 196 adantr ABCNM=NCgcdNkrsrgcds=1ks=ABrAmods=Bmods
198 197 impl ABCNM=NCgcdNkrsrgcds=1ks=ABrAmods=Bmods
199 198 adantr ABCNM=NCgcdNkrsNCgcdN=srgcds=1ks=ABrAmods=Bmods
200 199 imp ABCNM=NCgcdNkrsNCgcdN=srgcds=1ks=ABrAmods=Bmods
201 eqtr2 NCgcdN=MNCgcdN=sM=s
202 oveq2 M=sAmodM=Amods
203 oveq2 M=sBmodM=Bmods
204 202 203 eqeq12d M=sAmodM=BmodMAmods=Bmods
205 201 204 syl NCgcdN=MNCgcdN=sAmodM=BmodMAmods=Bmods
206 205 ex NCgcdN=MNCgcdN=sAmodM=BmodMAmods=Bmods
207 206 eqcoms M=NCgcdNNCgcdN=sAmodM=BmodMAmods=Bmods
208 207 adantl NM=NCgcdNNCgcdN=sAmodM=BmodMAmods=Bmods
209 208 adantl ABCNM=NCgcdNNCgcdN=sAmodM=BmodMAmods=Bmods
210 209 ad2antrr ABCNM=NCgcdNkrsNCgcdN=sAmodM=BmodMAmods=Bmods
211 210 imp ABCNM=NCgcdNkrsNCgcdN=sAmodM=BmodMAmods=Bmods
212 211 adantr ABCNM=NCgcdNkrsNCgcdN=srgcds=1AmodM=BmodMAmods=Bmods
213 200 212 sylibrd ABCNM=NCgcdNkrsNCgcdN=srgcds=1ks=ABrAmodM=BmodM
214 213 ex ABCNM=NCgcdNkrsNCgcdN=srgcds=1ks=ABrAmodM=BmodM
215 147 214 syl ABCNM=NCgcdNkrsNCgcdN=srgcds=1ks=ABrAmodM=BmodM
216 215 ex ABCNM=NCgcdNkrsNCgcdN=srgcds=1ks=ABrAmodM=BmodM
217 131 216 sylbird ABCNM=NCgcdNkrsN=CgcdNsrgcds=1ks=ABrAmodM=BmodM
218 217 com3l N=CgcdNsrgcds=1ABCNM=NCgcdNkrsks=ABrAmodM=BmodM
219 218 a1i C=CgcdNrN=CgcdNsrgcds=1ABCNM=NCgcdNkrsks=ABrAmodM=BmodM
220 219 3imp C=CgcdNrN=CgcdNsrgcds=1ABCNM=NCgcdNkrsks=ABrAmodM=BmodM
221 220 impcom ABCNM=NCgcdNkrsC=CgcdNrN=CgcdNsrgcds=1ks=ABrAmodM=BmodM
222 123 221 sylbid ABCNM=NCgcdNkrsC=CgcdNrN=CgcdNsrgcds=1ks=ArBrAmodM=BmodM
223 110 222 sylbid ABCNM=NCgcdNkrsC=CgcdNrN=CgcdNsrgcds=1kCgcdNs=ACgcdNrBCgcdNrAmodM=BmodM
224 31 223 sylbid ABCNM=NCgcdNkrsC=CgcdNrN=CgcdNsrgcds=1k N=ACBCAmodM=BmodM
225 224 ex ABCNM=NCgcdNkrsC=CgcdNrN=CgcdNsrgcds=1k N=ACBCAmodM=BmodM
226 225 rexlimdvva ABCNM=NCgcdNkrsC=CgcdNrN=CgcdNsrgcds=1k N=ACBCAmodM=BmodM
227 22 226 mpd ABCNM=NCgcdNkk N=ACBCAmodM=BmodM
228 227 rexlimdva ABCNM=NCgcdNkk N=ACBCAmodM=BmodM
229 7 228 sylbid ABCNM=NCgcdNACmodN=BCmodNAmodM=BmodM