Metamath Proof Explorer


Theorem constrsqrtcl

Description: Constructible numbers are closed under taking the square root. This is not generally the case for the cubic root operation, see 2sqr3nconstr . (Proposed by Saveliy Skresanov, 3-Nov-2025.) (Contributed by Thierry Arnoux, 6-Nov-2025)

Ref Expression
Hypothesis constrabscl.1 φ X Constr
Assertion constrsqrtcl φ X Constr

Proof

Step Hyp Ref Expression
1 constrabscl.1 φ X Constr
2 fveq2 X = 0 X = 0
3 sqrt0 0 = 0
4 2 3 eqtrdi X = 0 X = 0
5 0zd X = 0 0
6 5 zconstr X = 0 0 Constr
7 4 6 eqeltrd X = 0 X Constr
8 7 adantl φ X = 0 X Constr
9 1 constrcn φ X
10 9 adantr φ X + X
11 10 negnegd φ X + X = X
12 11 fveq2d φ X + X = X
13 simpr φ X + X +
14 13 rpred φ X + X
15 13 rpge0d φ X + 0 X
16 14 15 sqrtnegd φ X + X = i X
17 12 16 eqtr3d φ X + X = i X
18 iconstr i Constr
19 18 a1i φ X + i Constr
20 1 adantr φ X + X Constr
21 20 constrnegcl φ X + X Constr
22 21 14 15 constrresqrtcl φ X + X Constr
23 19 22 constrmulcl φ X + i X Constr
24 17 23 eqeltrd φ X + X Constr
25 24 adantlr φ X 0 X + X Constr
26 9 ad2antrr φ X 0 ¬ X + X
27 26 abscld φ X 0 ¬ X + X
28 27 recnd φ X 0 ¬ X + X
29 28 sqrtcld φ X 0 ¬ X + X
30 28 26 addcld φ X 0 ¬ X + X + X
31 30 abscld φ X 0 ¬ X + X + X
32 31 recnd φ X 0 ¬ X + X + X
33 9 ad2antrr φ ¬ X + X + X = 0 X
34 9 abscld φ X
35 34 ad2antrr φ ¬ X + X + X = 0 X
36 35 recnd φ ¬ X + X + X = 0 X
37 simpr φ ¬ X + X + X = 0 X + X = 0
38 addeq0 X X X + X = 0 X = X
39 38 biimpa X X X + X = 0 X = X
40 36 33 37 39 syl21anc φ ¬ X + X + X = 0 X = X
41 40 35 eqeltrrd φ ¬ X + X + X = 0 X
42 33 41 negrebd φ ¬ X + X + X = 0 X
43 0red φ ¬ X + X + X = 0 0
44 simplr φ ¬ X + X + X = 0 ¬ X +
45 negelrp X X + X < 0
46 45 notbid X ¬ X + ¬ X < 0
47 46 biimpa X ¬ X + ¬ X < 0
48 42 44 47 syl2anc φ ¬ X + X + X = 0 ¬ X < 0
49 43 42 48 nltled φ ¬ X + X + X = 0 0 X
50 42 49 absidd φ ¬ X + X + X = 0 X = X
51 50 40 eqtr3d φ ¬ X + X + X = 0 X = X
52 33 51 eqnegad φ ¬ X + X + X = 0 X = 0
53 52 ex φ ¬ X + X + X = 0 X = 0
54 53 necon3d φ ¬ X + X 0 X + X 0
55 54 impancom φ X 0 ¬ X + X + X 0
56 55 imp φ X 0 ¬ X + X + X 0
57 30 56 absne0d φ X 0 ¬ X + X + X 0
58 30 32 57 divcld φ X 0 ¬ X + X + X X + X
59 29 58 mulcld φ X 0 ¬ X + X X + X X + X
60 eqid X X + X X + X = X X + X X + X
61 60 sqreulem X X + X 0 X X + X X + X 2 = X 0 X X + X X + X i X X + X X + X +
62 26 56 61 syl2anc φ X 0 ¬ X + X X + X X + X 2 = X 0 X X + X X + X i X X + X X + X +
63 62 simp1d φ X 0 ¬ X + X X + X X + X 2 = X
64 62 simp2d φ X 0 ¬ X + 0 X X + X X + X
65 62 simp3d φ X 0 ¬ X + i X X + X X + X +
66 df-nel i X X + X X + X + ¬ i X X + X X + X +
67 65 66 sylib φ X 0 ¬ X + ¬ i X X + X X + X +
68 59 26 63 64 67 eqsqrtd φ X 0 ¬ X + X X + X X + X = X
69 1 ad2antrr φ X 0 ¬ X + X Constr
70 69 constrabscl φ X 0 ¬ X + X Constr
71 26 absge0d φ X 0 ¬ X + 0 X
72 70 27 71 constrresqrtcl φ X 0 ¬ X + X Constr
73 70 69 constraddcl φ X 0 ¬ X + X + X Constr
74 73 56 constrdircl φ X 0 ¬ X + X + X X + X Constr
75 72 74 constrmulcl φ X 0 ¬ X + X X + X X + X Constr
76 68 75 eqeltrrd φ X 0 ¬ X + X Constr
77 25 76 pm2.61dan φ X 0 X Constr
78 8 77 pm2.61dane φ X Constr