Metamath Proof Explorer


Theorem cphsscph

Description: A subspace of a subcomplex pre-Hilbert space is a subcomplex pre-Hilbert space. (Contributed by NM, 1-Feb-2008) (Revised by AV, 25-Sep-2022)

Ref Expression
Hypotheses cphsscph.x X=W𝑠U
cphsscph.s S=LSubSpW
Assertion cphsscph WCPreHilUSXCPreHil

Proof

Step Hyp Ref Expression
1 cphsscph.x X=W𝑠U
2 cphsscph.s S=LSubSpW
3 cphphl WCPreHilWPreHil
4 1 2 phlssphl WPreHilUSXPreHil
5 3 4 sylan WCPreHilUSXPreHil
6 cphnlm WCPreHilWNrmMod
7 1 2 lssnlm WNrmModUSXNrmMod
8 6 7 sylan WCPreHilUSXNrmMod
9 eqid ScalarW=ScalarW
10 eqid BaseScalarW=BaseScalarW
11 9 10 cphsca WCPreHilScalarW=fld𝑠BaseScalarW
12 11 adantr WCPreHilUSScalarW=fld𝑠BaseScalarW
13 1 9 resssca USScalarW=ScalarX
14 13 fveq2d USBaseScalarW=BaseScalarX
15 14 oveq2d USfld𝑠BaseScalarW=fld𝑠BaseScalarX
16 13 15 eqeq12d USScalarW=fld𝑠BaseScalarWScalarX=fld𝑠BaseScalarX
17 16 adantl WCPreHilUSScalarW=fld𝑠BaseScalarWScalarX=fld𝑠BaseScalarX
18 12 17 mpbid WCPreHilUSScalarX=fld𝑠BaseScalarX
19 5 8 18 3jca WCPreHilUSXPreHilXNrmModScalarX=fld𝑠BaseScalarX
20 simpl WCPreHilUSWCPreHil
21 elinel1 qBaseScalarW0+∞qBaseScalarW
22 21 adantr qBaseScalarW0+∞q=xqBaseScalarW
23 elinel2 qBaseScalarW0+∞q0+∞
24 elrege0 q0+∞q0q
25 24 simplbi q0+∞q
26 23 25 syl qBaseScalarW0+∞q
27 26 adantr qBaseScalarW0+∞q=xq
28 24 simprbi q0+∞0q
29 23 28 syl qBaseScalarW0+∞0q
30 29 adantr qBaseScalarW0+∞q=x0q
31 22 27 30 3jca qBaseScalarW0+∞q=xqBaseScalarWq0q
32 9 10 cphsqrtcl WCPreHilqBaseScalarWq0qqBaseScalarW
33 20 31 32 syl2anr qBaseScalarW0+∞q=xWCPreHilUSqBaseScalarW
34 eleq1 q=xqBaseScalarWxBaseScalarW
35 34 adantl qBaseScalarW0+∞q=xqBaseScalarWxBaseScalarW
36 35 adantr qBaseScalarW0+∞q=xWCPreHilUSqBaseScalarWxBaseScalarW
37 33 36 mpbid qBaseScalarW0+∞q=xWCPreHilUSxBaseScalarW
38 37 ex qBaseScalarW0+∞q=xWCPreHilUSxBaseScalarW
39 38 rexlimiva qBaseScalarW0+∞q=xWCPreHilUSxBaseScalarW
40 df-sqrt =xιc|c2=x0cic+
41 40 funmpt2 Fun
42 fvelima FunxBaseScalarW0+∞qBaseScalarW0+∞q=x
43 41 42 mpan xBaseScalarW0+∞qBaseScalarW0+∞q=x
44 39 43 syl11 WCPreHilUSxBaseScalarW0+∞xBaseScalarW
45 44 ssrdv WCPreHilUSBaseScalarW0+∞BaseScalarW
46 14 ineq1d USBaseScalarW0+∞=BaseScalarX0+∞
47 46 imaeq2d USBaseScalarW0+∞=BaseScalarX0+∞
48 47 14 sseq12d USBaseScalarW0+∞BaseScalarWBaseScalarX0+∞BaseScalarX
49 48 adantl WCPreHilUSBaseScalarW0+∞BaseScalarWBaseScalarX0+∞BaseScalarX
50 45 49 mpbid WCPreHilUSBaseScalarX0+∞BaseScalarX
51 cphlmod WCPreHilWLMod
52 2 lsssubg WLModUSUSubGrpW
53 51 52 sylan WCPreHilUSUSubGrpW
54 eqid normW=normW
55 eqid normX=normX
56 1 54 55 subgnm USubGrpWnormX=normWU
57 53 56 syl WCPreHilUSnormX=normWU
58 eqid BaseW=BaseW
59 eqid 𝑖W=𝑖W
60 58 59 54 cphnmfval WCPreHilnormW=bBaseWb𝑖Wb
61 60 adantr WCPreHilUSnormW=bBaseWb𝑖Wb
62 1 59 ressip US𝑖W=𝑖X
63 62 adantl WCPreHilUS𝑖W=𝑖X
64 63 oveqd WCPreHilUSb𝑖Wb=b𝑖Xb
65 64 fveq2d WCPreHilUSb𝑖Wb=b𝑖Xb
66 65 mpteq2dv WCPreHilUSbBaseWb𝑖Wb=bBaseWb𝑖Xb
67 61 66 eqtrd WCPreHilUSnormW=bBaseWb𝑖Xb
68 58 2 lssss USUBaseW
69 68 adantl WCPreHilUSUBaseW
70 dfss UBaseWU=UBaseW
71 69 70 sylib WCPreHilUSU=UBaseW
72 67 71 reseq12d WCPreHilUSnormWU=bBaseWb𝑖XbUBaseW
73 1 58 ressbas USUBaseW=BaseX
74 73 adantl WCPreHilUSUBaseW=BaseX
75 74 reseq2d WCPreHilUSbBaseWb𝑖XbUBaseW=bBaseWb𝑖XbBaseX
76 72 75 eqtrd WCPreHilUSnormWU=bBaseWb𝑖XbBaseX
77 1 58 ressbasss BaseXBaseW
78 77 a1i WCPreHilUSBaseXBaseW
79 78 resmptd WCPreHilUSbBaseWb𝑖XbBaseX=bBaseXb𝑖Xb
80 57 76 79 3eqtrd WCPreHilUSnormX=bBaseXb𝑖Xb
81 eqid BaseX=BaseX
82 eqid 𝑖X=𝑖X
83 eqid ScalarX=ScalarX
84 eqid BaseScalarX=BaseScalarX
85 81 82 55 83 84 iscph XCPreHilXPreHilXNrmModScalarX=fld𝑠BaseScalarXBaseScalarX0+∞BaseScalarXnormX=bBaseXb𝑖Xb
86 19 50 80 85 syl3anbrc WCPreHilUSXCPreHil