| Step | Hyp | Ref | Expression | 
						
							| 1 |  | cphsscph.x |  | 
						
							| 2 |  | cphsscph.s |  | 
						
							| 3 |  | cphphl |  | 
						
							| 4 | 1 2 | phlssphl |  | 
						
							| 5 | 3 4 | sylan |  | 
						
							| 6 |  | cphnlm |  | 
						
							| 7 | 1 2 | lssnlm |  | 
						
							| 8 | 6 7 | sylan |  | 
						
							| 9 |  | eqid |  | 
						
							| 10 |  | eqid |  | 
						
							| 11 | 9 10 | cphsca |  | 
						
							| 12 | 11 | adantr |  | 
						
							| 13 | 1 9 | resssca |  | 
						
							| 14 | 13 | fveq2d |  | 
						
							| 15 | 14 | oveq2d |  | 
						
							| 16 | 13 15 | eqeq12d |  | 
						
							| 17 | 16 | adantl |  | 
						
							| 18 | 12 17 | mpbid |  | 
						
							| 19 | 5 8 18 | 3jca |  | 
						
							| 20 |  | simpl |  | 
						
							| 21 |  | elinel1 |  | 
						
							| 22 | 21 | adantr |  | 
						
							| 23 |  | elinel2 |  | 
						
							| 24 |  | elrege0 |  | 
						
							| 25 | 24 | simplbi |  | 
						
							| 26 | 23 25 | syl |  | 
						
							| 27 | 26 | adantr |  | 
						
							| 28 | 24 | simprbi |  | 
						
							| 29 | 23 28 | syl |  | 
						
							| 30 | 29 | adantr |  | 
						
							| 31 | 22 27 30 | 3jca |  | 
						
							| 32 | 9 10 | cphsqrtcl |  | 
						
							| 33 | 20 31 32 | syl2anr |  | 
						
							| 34 |  | eleq1 |  | 
						
							| 35 | 34 | adantl |  | 
						
							| 36 | 35 | adantr |  | 
						
							| 37 | 33 36 | mpbid |  | 
						
							| 38 | 37 | ex |  | 
						
							| 39 | 38 | rexlimiva |  | 
						
							| 40 |  | df-sqrt |  | 
						
							| 41 | 40 | funmpt2 |  | 
						
							| 42 |  | fvelima |  | 
						
							| 43 | 41 42 | mpan |  | 
						
							| 44 | 39 43 | syl11 |  | 
						
							| 45 | 44 | ssrdv |  | 
						
							| 46 | 14 | ineq1d |  | 
						
							| 47 | 46 | imaeq2d |  | 
						
							| 48 | 47 14 | sseq12d |  | 
						
							| 49 | 48 | adantl |  | 
						
							| 50 | 45 49 | mpbid |  | 
						
							| 51 |  | cphlmod |  | 
						
							| 52 | 2 | lsssubg |  | 
						
							| 53 | 51 52 | sylan |  | 
						
							| 54 |  | eqid |  | 
						
							| 55 |  | eqid |  | 
						
							| 56 | 1 54 55 | subgnm |  | 
						
							| 57 | 53 56 | syl |  | 
						
							| 58 |  | eqid |  | 
						
							| 59 |  | eqid |  | 
						
							| 60 | 58 59 54 | cphnmfval |  | 
						
							| 61 | 60 | adantr |  | 
						
							| 62 | 1 59 | ressip |  | 
						
							| 63 | 62 | adantl |  | 
						
							| 64 | 63 | oveqd |  | 
						
							| 65 | 64 | fveq2d |  | 
						
							| 66 | 65 | mpteq2dv |  | 
						
							| 67 | 61 66 | eqtrd |  | 
						
							| 68 | 58 2 | lssss |  | 
						
							| 69 | 68 | adantl |  | 
						
							| 70 |  | dfss |  | 
						
							| 71 | 69 70 | sylib |  | 
						
							| 72 | 67 71 | reseq12d |  | 
						
							| 73 | 1 58 | ressbas |  | 
						
							| 74 | 73 | adantl |  | 
						
							| 75 | 74 | reseq2d |  | 
						
							| 76 | 72 75 | eqtrd |  | 
						
							| 77 | 1 58 | ressbasss |  | 
						
							| 78 | 77 | a1i |  | 
						
							| 79 | 78 | resmptd |  | 
						
							| 80 | 57 76 79 | 3eqtrd |  | 
						
							| 81 |  | eqid |  | 
						
							| 82 |  | eqid |  | 
						
							| 83 |  | eqid |  | 
						
							| 84 |  | eqid |  | 
						
							| 85 | 81 82 55 83 84 | iscph |  | 
						
							| 86 | 19 50 80 85 | syl3anbrc |  |