| Step | Hyp | Ref | Expression | 
						
							| 1 |  | cpmadugsum.a |  | 
						
							| 2 |  | cpmadugsum.b |  | 
						
							| 3 |  | cpmadugsum.p |  | 
						
							| 4 |  | cpmadugsum.y |  | 
						
							| 5 |  | cpmadugsum.t |  | 
						
							| 6 |  | cpmadugsum.x |  | 
						
							| 7 |  | cpmadugsum.e |  | 
						
							| 8 |  | cpmadugsum.m |  | 
						
							| 9 |  | cpmadugsum.r |  | 
						
							| 10 |  | cpmadugsum.1 |  | 
						
							| 11 |  | cpmadugsum.g |  | 
						
							| 12 |  | cpmadugsum.s |  | 
						
							| 13 |  | cpmadugsum.i |  | 
						
							| 14 |  | cpmadugsum.j |  | 
						
							| 15 |  | cpmadugsum.0 |  | 
						
							| 16 |  | cpmadugsum.g2 |  | 
						
							| 17 |  | cpmidgsum2.c |  | 
						
							| 18 |  | cpmidgsum2.k |  | 
						
							| 19 |  | cpmidgsum2.h |  | 
						
							| 20 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 | cpmadugsum |  | 
						
							| 21 |  | crngring |  | 
						
							| 22 | 21 | anim2i |  | 
						
							| 23 | 22 | 3adant3 |  | 
						
							| 24 | 3 4 | pmatring |  | 
						
							| 25 |  | ringgrp |  | 
						
							| 26 | 23 24 25 | 3syl |  | 
						
							| 27 | 3 4 | pmatlmod |  | 
						
							| 28 | 21 27 | sylan2 |  | 
						
							| 29 | 21 | adantl |  | 
						
							| 30 |  | eqid |  | 
						
							| 31 | 6 3 30 | vr1cl |  | 
						
							| 32 | 29 31 | syl |  | 
						
							| 33 | 3 | ply1crng |  | 
						
							| 34 | 4 | matsca2 |  | 
						
							| 35 | 33 34 | sylan2 |  | 
						
							| 36 | 35 | fveq2d |  | 
						
							| 37 | 32 36 | eleqtrd |  | 
						
							| 38 |  | eqid |  | 
						
							| 39 | 38 10 | ringidcl |  | 
						
							| 40 | 22 24 39 | 3syl |  | 
						
							| 41 |  | eqid |  | 
						
							| 42 |  | eqid |  | 
						
							| 43 | 38 41 8 42 | lmodvscl |  | 
						
							| 44 | 28 37 40 43 | syl3anc |  | 
						
							| 45 | 44 | 3adant3 |  | 
						
							| 46 | 5 1 2 3 4 | mat2pmatbas |  | 
						
							| 47 | 21 46 | syl3an2 |  | 
						
							| 48 | 38 12 | grpsubcl |  | 
						
							| 49 | 26 45 47 48 | syl3anc |  | 
						
							| 50 | 33 | 3ad2ant2 |  | 
						
							| 51 |  | eqid |  | 
						
							| 52 | 4 38 14 51 10 9 8 | madurid |  | 
						
							| 53 | 49 50 52 | syl2anc |  | 
						
							| 54 |  | id |  | 
						
							| 55 |  | fveq2 |  | 
						
							| 56 | 54 55 | oveq12d |  | 
						
							| 57 | 13 56 | mp1i |  | 
						
							| 58 | 17 1 2 3 4 51 12 6 8 5 10 | chpmatval |  | 
						
							| 59 | 18 58 | eqtrid |  | 
						
							| 60 | 59 | oveq1d |  | 
						
							| 61 | 19 60 | eqtrid |  | 
						
							| 62 | 53 57 61 | 3eqtr4rd |  | 
						
							| 63 | 62 | adantr |  | 
						
							| 64 |  | simpr |  | 
						
							| 65 | 63 64 | eqtrd |  | 
						
							| 66 | 65 | ex |  | 
						
							| 67 | 66 | reximdv |  | 
						
							| 68 | 67 | reximdv |  | 
						
							| 69 | 20 68 | mpd |  |