Metamath Proof Explorer


Theorem cpmidgsum2

Description: Representation of the identity matrix multiplied with the characteristic polynomial of a matrix as another group sum. (Contributed by AV, 10-Nov-2019)

Ref Expression
Hypotheses cpmadugsum.a A=NMatR
cpmadugsum.b B=BaseA
cpmadugsum.p P=Poly1R
cpmadugsum.y Y=NMatP
cpmadugsum.t T=NmatToPolyMatR
cpmadugsum.x X=var1R
cpmadugsum.e ×˙=mulGrpP
cpmadugsum.m ·˙=Y
cpmadugsum.r ×˙=Y
cpmadugsum.1 1˙=1Y
cpmadugsum.g +˙=+Y
cpmadugsum.s -˙=-Y
cpmadugsum.i I=X·˙1˙-˙TM
cpmadugsum.j J=NmaAdjuP
cpmadugsum.0 0˙=0Y
cpmadugsum.g2 G=n0ifn=00˙-˙TM×˙Tb0ifn=s+1Tbsifs+1<n0˙Tbn1-˙TM×˙Tbn
cpmidgsum2.c C=NCharPlyMatR
cpmidgsum2.k K=CM
cpmidgsum2.h H=K·˙1˙
Assertion cpmidgsum2 NFinRCRingMBsbB0sH=Yi0i×˙X·˙Gi

Proof

Step Hyp Ref Expression
1 cpmadugsum.a A=NMatR
2 cpmadugsum.b B=BaseA
3 cpmadugsum.p P=Poly1R
4 cpmadugsum.y Y=NMatP
5 cpmadugsum.t T=NmatToPolyMatR
6 cpmadugsum.x X=var1R
7 cpmadugsum.e ×˙=mulGrpP
8 cpmadugsum.m ·˙=Y
9 cpmadugsum.r ×˙=Y
10 cpmadugsum.1 1˙=1Y
11 cpmadugsum.g +˙=+Y
12 cpmadugsum.s -˙=-Y
13 cpmadugsum.i I=X·˙1˙-˙TM
14 cpmadugsum.j J=NmaAdjuP
15 cpmadugsum.0 0˙=0Y
16 cpmadugsum.g2 G=n0ifn=00˙-˙TM×˙Tb0ifn=s+1Tbsifs+1<n0˙Tbn1-˙TM×˙Tbn
17 cpmidgsum2.c C=NCharPlyMatR
18 cpmidgsum2.k K=CM
19 cpmidgsum2.h H=K·˙1˙
20 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 cpmadugsum NFinRCRingMBsbB0sI×˙JI=Yi0i×˙X·˙Gi
21 crngring RCRingRRing
22 21 anim2i NFinRCRingNFinRRing
23 22 3adant3 NFinRCRingMBNFinRRing
24 3 4 pmatring NFinRRingYRing
25 ringgrp YRingYGrp
26 23 24 25 3syl NFinRCRingMBYGrp
27 3 4 pmatlmod NFinRRingYLMod
28 21 27 sylan2 NFinRCRingYLMod
29 21 adantl NFinRCRingRRing
30 eqid BaseP=BaseP
31 6 3 30 vr1cl RRingXBaseP
32 29 31 syl NFinRCRingXBaseP
33 3 ply1crng RCRingPCRing
34 4 matsca2 NFinPCRingP=ScalarY
35 33 34 sylan2 NFinRCRingP=ScalarY
36 35 fveq2d NFinRCRingBaseP=BaseScalarY
37 32 36 eleqtrd NFinRCRingXBaseScalarY
38 eqid BaseY=BaseY
39 38 10 ringidcl YRing1˙BaseY
40 22 24 39 3syl NFinRCRing1˙BaseY
41 eqid ScalarY=ScalarY
42 eqid BaseScalarY=BaseScalarY
43 38 41 8 42 lmodvscl YLModXBaseScalarY1˙BaseYX·˙1˙BaseY
44 28 37 40 43 syl3anc NFinRCRingX·˙1˙BaseY
45 44 3adant3 NFinRCRingMBX·˙1˙BaseY
46 5 1 2 3 4 mat2pmatbas NFinRRingMBTMBaseY
47 21 46 syl3an2 NFinRCRingMBTMBaseY
48 38 12 grpsubcl YGrpX·˙1˙BaseYTMBaseYX·˙1˙-˙TMBaseY
49 26 45 47 48 syl3anc NFinRCRingMBX·˙1˙-˙TMBaseY
50 33 3ad2ant2 NFinRCRingMBPCRing
51 eqid NmaDetP=NmaDetP
52 4 38 14 51 10 9 8 madurid X·˙1˙-˙TMBaseYPCRingX·˙1˙-˙TM×˙JX·˙1˙-˙TM=NmaDetPX·˙1˙-˙TM·˙1˙
53 49 50 52 syl2anc NFinRCRingMBX·˙1˙-˙TM×˙JX·˙1˙-˙TM=NmaDetPX·˙1˙-˙TM·˙1˙
54 id I=X·˙1˙-˙TMI=X·˙1˙-˙TM
55 fveq2 I=X·˙1˙-˙TMJI=JX·˙1˙-˙TM
56 54 55 oveq12d I=X·˙1˙-˙TMI×˙JI=X·˙1˙-˙TM×˙JX·˙1˙-˙TM
57 13 56 mp1i NFinRCRingMBI×˙JI=X·˙1˙-˙TM×˙JX·˙1˙-˙TM
58 17 1 2 3 4 51 12 6 8 5 10 chpmatval NFinRCRingMBCM=NmaDetPX·˙1˙-˙TM
59 18 58 eqtrid NFinRCRingMBK=NmaDetPX·˙1˙-˙TM
60 59 oveq1d NFinRCRingMBK·˙1˙=NmaDetPX·˙1˙-˙TM·˙1˙
61 19 60 eqtrid NFinRCRingMBH=NmaDetPX·˙1˙-˙TM·˙1˙
62 53 57 61 3eqtr4rd NFinRCRingMBH=I×˙JI
63 62 adantr NFinRCRingMBI×˙JI=Yi0i×˙X·˙GiH=I×˙JI
64 simpr NFinRCRingMBI×˙JI=Yi0i×˙X·˙GiI×˙JI=Yi0i×˙X·˙Gi
65 63 64 eqtrd NFinRCRingMBI×˙JI=Yi0i×˙X·˙GiH=Yi0i×˙X·˙Gi
66 65 ex NFinRCRingMBI×˙JI=Yi0i×˙X·˙GiH=Yi0i×˙X·˙Gi
67 66 reximdv NFinRCRingMBbB0sI×˙JI=Yi0i×˙X·˙GibB0sH=Yi0i×˙X·˙Gi
68 67 reximdv NFinRCRingMBsbB0sI×˙JI=Yi0i×˙X·˙GisbB0sH=Yi0i×˙X·˙Gi
69 20 68 mpd NFinRCRingMBsbB0sH=Yi0i×˙X·˙Gi