Metamath Proof Explorer


Theorem cpmidgsum2

Description: Representation of the identity matrix multiplied with the characteristic polynomial of a matrix as another group sum. (Contributed by AV, 10-Nov-2019)

Ref Expression
Hypotheses cpmadugsum.a A = N Mat R
cpmadugsum.b B = Base A
cpmadugsum.p P = Poly 1 R
cpmadugsum.y Y = N Mat P
cpmadugsum.t T = N matToPolyMat R
cpmadugsum.x X = var 1 R
cpmadugsum.e × ˙ = mulGrp P
cpmadugsum.m · ˙ = Y
cpmadugsum.r × ˙ = Y
cpmadugsum.1 1 ˙ = 1 Y
cpmadugsum.g + ˙ = + Y
cpmadugsum.s - ˙ = - Y
cpmadugsum.i I = X · ˙ 1 ˙ - ˙ T M
cpmadugsum.j J = N maAdju P
cpmadugsum.0 0 ˙ = 0 Y
cpmadugsum.g2 G = n 0 if n = 0 0 ˙ - ˙ T M × ˙ T b 0 if n = s + 1 T b s if s + 1 < n 0 ˙ T b n 1 - ˙ T M × ˙ T b n
cpmidgsum2.c C = N CharPlyMat R
cpmidgsum2.k K = C M
cpmidgsum2.h H = K · ˙ 1 ˙
Assertion cpmidgsum2 N Fin R CRing M B s b B 0 s H = Y i 0 i × ˙ X · ˙ G i

Proof

Step Hyp Ref Expression
1 cpmadugsum.a A = N Mat R
2 cpmadugsum.b B = Base A
3 cpmadugsum.p P = Poly 1 R
4 cpmadugsum.y Y = N Mat P
5 cpmadugsum.t T = N matToPolyMat R
6 cpmadugsum.x X = var 1 R
7 cpmadugsum.e × ˙ = mulGrp P
8 cpmadugsum.m · ˙ = Y
9 cpmadugsum.r × ˙ = Y
10 cpmadugsum.1 1 ˙ = 1 Y
11 cpmadugsum.g + ˙ = + Y
12 cpmadugsum.s - ˙ = - Y
13 cpmadugsum.i I = X · ˙ 1 ˙ - ˙ T M
14 cpmadugsum.j J = N maAdju P
15 cpmadugsum.0 0 ˙ = 0 Y
16 cpmadugsum.g2 G = n 0 if n = 0 0 ˙ - ˙ T M × ˙ T b 0 if n = s + 1 T b s if s + 1 < n 0 ˙ T b n 1 - ˙ T M × ˙ T b n
17 cpmidgsum2.c C = N CharPlyMat R
18 cpmidgsum2.k K = C M
19 cpmidgsum2.h H = K · ˙ 1 ˙
20 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 cpmadugsum N Fin R CRing M B s b B 0 s I × ˙ J I = Y i 0 i × ˙ X · ˙ G i
21 crngring R CRing R Ring
22 21 anim2i N Fin R CRing N Fin R Ring
23 22 3adant3 N Fin R CRing M B N Fin R Ring
24 3 4 pmatring N Fin R Ring Y Ring
25 ringgrp Y Ring Y Grp
26 23 24 25 3syl N Fin R CRing M B Y Grp
27 3 4 pmatlmod N Fin R Ring Y LMod
28 21 27 sylan2 N Fin R CRing Y LMod
29 21 adantl N Fin R CRing R Ring
30 eqid Base P = Base P
31 6 3 30 vr1cl R Ring X Base P
32 29 31 syl N Fin R CRing X Base P
33 3 ply1crng R CRing P CRing
34 4 matsca2 N Fin P CRing P = Scalar Y
35 33 34 sylan2 N Fin R CRing P = Scalar Y
36 35 fveq2d N Fin R CRing Base P = Base Scalar Y
37 32 36 eleqtrd N Fin R CRing X Base Scalar Y
38 eqid Base Y = Base Y
39 38 10 ringidcl Y Ring 1 ˙ Base Y
40 22 24 39 3syl N Fin R CRing 1 ˙ Base Y
41 eqid Scalar Y = Scalar Y
42 eqid Base Scalar Y = Base Scalar Y
43 38 41 8 42 lmodvscl Y LMod X Base Scalar Y 1 ˙ Base Y X · ˙ 1 ˙ Base Y
44 28 37 40 43 syl3anc N Fin R CRing X · ˙ 1 ˙ Base Y
45 44 3adant3 N Fin R CRing M B X · ˙ 1 ˙ Base Y
46 5 1 2 3 4 mat2pmatbas N Fin R Ring M B T M Base Y
47 21 46 syl3an2 N Fin R CRing M B T M Base Y
48 38 12 grpsubcl Y Grp X · ˙ 1 ˙ Base Y T M Base Y X · ˙ 1 ˙ - ˙ T M Base Y
49 26 45 47 48 syl3anc N Fin R CRing M B X · ˙ 1 ˙ - ˙ T M Base Y
50 33 3ad2ant2 N Fin R CRing M B P CRing
51 eqid N maDet P = N maDet P
52 4 38 14 51 10 9 8 madurid X · ˙ 1 ˙ - ˙ T M Base Y P CRing X · ˙ 1 ˙ - ˙ T M × ˙ J X · ˙ 1 ˙ - ˙ T M = N maDet P X · ˙ 1 ˙ - ˙ T M · ˙ 1 ˙
53 49 50 52 syl2anc N Fin R CRing M B X · ˙ 1 ˙ - ˙ T M × ˙ J X · ˙ 1 ˙ - ˙ T M = N maDet P X · ˙ 1 ˙ - ˙ T M · ˙ 1 ˙
54 id I = X · ˙ 1 ˙ - ˙ T M I = X · ˙ 1 ˙ - ˙ T M
55 fveq2 I = X · ˙ 1 ˙ - ˙ T M J I = J X · ˙ 1 ˙ - ˙ T M
56 54 55 oveq12d I = X · ˙ 1 ˙ - ˙ T M I × ˙ J I = X · ˙ 1 ˙ - ˙ T M × ˙ J X · ˙ 1 ˙ - ˙ T M
57 13 56 mp1i N Fin R CRing M B I × ˙ J I = X · ˙ 1 ˙ - ˙ T M × ˙ J X · ˙ 1 ˙ - ˙ T M
58 17 1 2 3 4 51 12 6 8 5 10 chpmatval N Fin R CRing M B C M = N maDet P X · ˙ 1 ˙ - ˙ T M
59 18 58 eqtrid N Fin R CRing M B K = N maDet P X · ˙ 1 ˙ - ˙ T M
60 59 oveq1d N Fin R CRing M B K · ˙ 1 ˙ = N maDet P X · ˙ 1 ˙ - ˙ T M · ˙ 1 ˙
61 19 60 eqtrid N Fin R CRing M B H = N maDet P X · ˙ 1 ˙ - ˙ T M · ˙ 1 ˙
62 53 57 61 3eqtr4rd N Fin R CRing M B H = I × ˙ J I
63 62 adantr N Fin R CRing M B I × ˙ J I = Y i 0 i × ˙ X · ˙ G i H = I × ˙ J I
64 simpr N Fin R CRing M B I × ˙ J I = Y i 0 i × ˙ X · ˙ G i I × ˙ J I = Y i 0 i × ˙ X · ˙ G i
65 63 64 eqtrd N Fin R CRing M B I × ˙ J I = Y i 0 i × ˙ X · ˙ G i H = Y i 0 i × ˙ X · ˙ G i
66 65 ex N Fin R CRing M B I × ˙ J I = Y i 0 i × ˙ X · ˙ G i H = Y i 0 i × ˙ X · ˙ G i
67 66 reximdv N Fin R CRing M B b B 0 s I × ˙ J I = Y i 0 i × ˙ X · ˙ G i b B 0 s H = Y i 0 i × ˙ X · ˙ G i
68 67 reximdv N Fin R CRing M B s b B 0 s I × ˙ J I = Y i 0 i × ˙ X · ˙ G i s b B 0 s H = Y i 0 i × ˙ X · ˙ G i
69 20 68 mpd N Fin R CRing M B s b B 0 s H = Y i 0 i × ˙ X · ˙ G i