Description: Representation of the identity matrix multiplied with the characteristic polynomial of a matrix as another group sum. (Contributed by AV, 10-Nov-2019)
Ref | Expression | ||
---|---|---|---|
Hypotheses | cpmadugsum.a | |
|
cpmadugsum.b | |
||
cpmadugsum.p | |
||
cpmadugsum.y | |
||
cpmadugsum.t | |
||
cpmadugsum.x | |
||
cpmadugsum.e | |
||
cpmadugsum.m | |
||
cpmadugsum.r | |
||
cpmadugsum.1 | |
||
cpmadugsum.g | |
||
cpmadugsum.s | |
||
cpmadugsum.i | |
||
cpmadugsum.j | |
||
cpmadugsum.0 | |
||
cpmadugsum.g2 | |
||
cpmidgsum2.c | |
||
cpmidgsum2.k | |
||
cpmidgsum2.h | |
||
Assertion | cpmidgsum2 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cpmadugsum.a | |
|
2 | cpmadugsum.b | |
|
3 | cpmadugsum.p | |
|
4 | cpmadugsum.y | |
|
5 | cpmadugsum.t | |
|
6 | cpmadugsum.x | |
|
7 | cpmadugsum.e | |
|
8 | cpmadugsum.m | |
|
9 | cpmadugsum.r | |
|
10 | cpmadugsum.1 | |
|
11 | cpmadugsum.g | |
|
12 | cpmadugsum.s | |
|
13 | cpmadugsum.i | |
|
14 | cpmadugsum.j | |
|
15 | cpmadugsum.0 | |
|
16 | cpmadugsum.g2 | |
|
17 | cpmidgsum2.c | |
|
18 | cpmidgsum2.k | |
|
19 | cpmidgsum2.h | |
|
20 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 | cpmadugsum | |
21 | crngring | |
|
22 | 21 | anim2i | |
23 | 22 | 3adant3 | |
24 | 3 4 | pmatring | |
25 | ringgrp | |
|
26 | 23 24 25 | 3syl | |
27 | 3 4 | pmatlmod | |
28 | 21 27 | sylan2 | |
29 | 21 | adantl | |
30 | eqid | |
|
31 | 6 3 30 | vr1cl | |
32 | 29 31 | syl | |
33 | 3 | ply1crng | |
34 | 4 | matsca2 | |
35 | 33 34 | sylan2 | |
36 | 35 | fveq2d | |
37 | 32 36 | eleqtrd | |
38 | eqid | |
|
39 | 38 10 | ringidcl | |
40 | 22 24 39 | 3syl | |
41 | eqid | |
|
42 | eqid | |
|
43 | 38 41 8 42 | lmodvscl | |
44 | 28 37 40 43 | syl3anc | |
45 | 44 | 3adant3 | |
46 | 5 1 2 3 4 | mat2pmatbas | |
47 | 21 46 | syl3an2 | |
48 | 38 12 | grpsubcl | |
49 | 26 45 47 48 | syl3anc | |
50 | 33 | 3ad2ant2 | |
51 | eqid | |
|
52 | 4 38 14 51 10 9 8 | madurid | |
53 | 49 50 52 | syl2anc | |
54 | id | |
|
55 | fveq2 | |
|
56 | 54 55 | oveq12d | |
57 | 13 56 | mp1i | |
58 | 17 1 2 3 4 51 12 6 8 5 10 | chpmatval | |
59 | 18 58 | eqtrid | |
60 | 59 | oveq1d | |
61 | 19 60 | eqtrid | |
62 | 53 57 61 | 3eqtr4rd | |
63 | 62 | adantr | |
64 | simpr | |
|
65 | 63 64 | eqtrd | |
66 | 65 | ex | |
67 | 66 | reximdv | |
68 | 67 | reximdv | |
69 | 20 68 | mpd | |