| Step |
Hyp |
Ref |
Expression |
| 1 |
|
cvmcov.1 |
|
| 2 |
|
cvmtop1 |
|
| 3 |
2
|
3ad2ant1 |
|
| 4 |
1
|
cvmsuni |
|
| 5 |
4
|
3ad2ant2 |
|
| 6 |
1
|
cvmsss |
|
| 7 |
6
|
3ad2ant2 |
|
| 8 |
7
|
unissd |
|
| 9 |
5 8
|
eqsstrrd |
|
| 10 |
|
eqid |
|
| 11 |
10
|
restuni |
|
| 12 |
3 9 11
|
syl2anc |
|
| 13 |
12
|
difeq1d |
|
| 14 |
|
unisng |
|
| 15 |
14
|
3ad2ant3 |
|
| 16 |
15
|
uneq2d |
|
| 17 |
|
uniun |
|
| 18 |
|
undif1 |
|
| 19 |
|
simp3 |
|
| 20 |
19
|
snssd |
|
| 21 |
|
ssequn2 |
|
| 22 |
20 21
|
sylib |
|
| 23 |
18 22
|
eqtrid |
|
| 24 |
23
|
unieqd |
|
| 25 |
24 5
|
eqtrd |
|
| 26 |
17 25
|
eqtr3id |
|
| 27 |
16 26
|
eqtr3d |
|
| 28 |
|
difss |
|
| 29 |
28
|
unissi |
|
| 30 |
29 5
|
sseqtrid |
|
| 31 |
|
uniiun |
|
| 32 |
31
|
ineq2i |
|
| 33 |
|
incom |
|
| 34 |
|
iunin2 |
|
| 35 |
32 33 34
|
3eqtr4i |
|
| 36 |
|
eldifsn |
|
| 37 |
|
nesym |
|
| 38 |
1
|
cvmsdisj |
|
| 39 |
38
|
3expa |
|
| 40 |
39
|
ord |
|
| 41 |
37 40
|
biimtrid |
|
| 42 |
41
|
impr |
|
| 43 |
36 42
|
sylan2b |
|
| 44 |
43
|
iuneq2dv |
|
| 45 |
44
|
3adant1 |
|
| 46 |
|
iun0 |
|
| 47 |
45 46
|
eqtrdi |
|
| 48 |
35 47
|
eqtrid |
|
| 49 |
|
uneqdifeq |
|
| 50 |
30 48 49
|
syl2anc |
|
| 51 |
27 50
|
mpbid |
|
| 52 |
13 51
|
eqtr3d |
|
| 53 |
|
uniexg |
|
| 54 |
53
|
3ad2ant2 |
|
| 55 |
5 54
|
eqeltrrd |
|
| 56 |
|
resttop |
|
| 57 |
3 55 56
|
syl2anc |
|
| 58 |
|
elssuni |
|
| 59 |
58
|
adantl |
|
| 60 |
5
|
adantr |
|
| 61 |
59 60
|
sseqtrd |
|
| 62 |
|
dfss2 |
|
| 63 |
61 62
|
sylib |
|
| 64 |
3
|
adantr |
|
| 65 |
55
|
adantr |
|
| 66 |
7
|
sselda |
|
| 67 |
|
elrestr |
|
| 68 |
64 65 66 67
|
syl3anc |
|
| 69 |
63 68
|
eqeltrrd |
|
| 70 |
69
|
ex |
|
| 71 |
70
|
ssrdv |
|
| 72 |
71
|
ssdifssd |
|
| 73 |
|
uniopn |
|
| 74 |
57 72 73
|
syl2anc |
|
| 75 |
|
eqid |
|
| 76 |
75
|
opncld |
|
| 77 |
57 74 76
|
syl2anc |
|
| 78 |
52 77
|
eqeltrrd |
|