| Step |
Hyp |
Ref |
Expression |
| 1 |
|
cvrat4.b |
|
| 2 |
|
cvrat4.l |
|
| 3 |
|
cvrat4.j |
|
| 4 |
|
cvrat4.z |
|
| 5 |
|
cvrat4.a |
|
| 6 |
|
hlatl |
|
| 7 |
6
|
adantr |
|
| 8 |
|
simpr1 |
|
| 9 |
1 2 4 5
|
atlex |
|
| 10 |
9
|
3exp |
|
| 11 |
7 8 10
|
sylc |
|
| 12 |
11
|
adantr |
|
| 13 |
|
simpll |
|
| 14 |
|
simplr3 |
|
| 15 |
|
simpr |
|
| 16 |
2 3 5
|
hlatlej1 |
|
| 17 |
13 14 15 16
|
syl3anc |
|
| 18 |
|
breq1 |
|
| 19 |
17 18
|
imbitrrid |
|
| 20 |
19
|
expd |
|
| 21 |
20
|
impcom |
|
| 22 |
21
|
anim2d |
|
| 23 |
22
|
expcomd |
|
| 24 |
23
|
reximdvai |
|
| 25 |
12 24
|
syld |
|
| 26 |
25
|
ex |
|
| 27 |
26
|
a1i |
|
| 28 |
27
|
com4l |
|
| 29 |
28
|
imp4a |
|
| 30 |
|
hllat |
|
| 31 |
30
|
adantr |
|
| 32 |
|
simpr3 |
|
| 33 |
1 5
|
atbase |
|
| 34 |
32 33
|
syl |
|
| 35 |
1 2 3
|
latleeqj2 |
|
| 36 |
31 34 8 35
|
syl3anc |
|
| 37 |
36
|
biimpa |
|
| 38 |
37
|
breq2d |
|
| 39 |
38
|
biimpa |
|
| 40 |
39
|
expl |
|
| 41 |
|
simpl |
|
| 42 |
|
simpr2 |
|
| 43 |
2 3 5
|
hlatlej2 |
|
| 44 |
41 32 42 43
|
syl3anc |
|
| 45 |
40 44
|
jctird |
|
| 46 |
45 42
|
jctild |
|
| 47 |
46
|
impl |
|
| 48 |
|
breq1 |
|
| 49 |
|
oveq2 |
|
| 50 |
49
|
breq2d |
|
| 51 |
48 50
|
anbi12d |
|
| 52 |
51
|
rspcev |
|
| 53 |
47 52
|
syl |
|
| 54 |
53
|
adantrl |
|
| 55 |
54
|
exp31 |
|
| 56 |
|
simpr |
|
| 57 |
|
ioran |
|
| 58 |
|
df-ne |
|
| 59 |
58
|
anbi1i |
|
| 60 |
57 59
|
bitr4i |
|
| 61 |
|
eqid |
|
| 62 |
1 2 3 61 5
|
cvrat3 |
|
| 63 |
62
|
3expd |
|
| 64 |
63
|
imp4c |
|
| 65 |
1 5
|
atbase |
|
| 66 |
42 65
|
syl |
|
| 67 |
1 3
|
latjcl |
|
| 68 |
31 66 34 67
|
syl3anc |
|
| 69 |
1 2 61
|
latmle1 |
|
| 70 |
31 8 68 69
|
syl3anc |
|
| 71 |
70
|
adantr |
|
| 72 |
|
simpll |
|
| 73 |
63
|
imp44 |
|
| 74 |
|
simplr2 |
|
| 75 |
34
|
adantr |
|
| 76 |
73 74 75
|
3jca |
|
| 77 |
72 76
|
jca |
|
| 78 |
1 2 61 4 5
|
atnle |
|
| 79 |
7 32 8 78
|
syl3anc |
|
| 80 |
1 61
|
latmcom |
|
| 81 |
31 34 8 80
|
syl3anc |
|
| 82 |
81
|
eqeq1d |
|
| 83 |
79 82
|
bitrd |
|
| 84 |
1 61
|
latmcl |
|
| 85 |
31 8 68 84
|
syl3anc |
|
| 86 |
85 8 34
|
3jca |
|
| 87 |
31 86
|
jca |
|
| 88 |
1 2 61
|
latmlem2 |
|
| 89 |
87 70 88
|
sylc |
|
| 90 |
89 81
|
breqtrd |
|
| 91 |
|
breq2 |
|
| 92 |
90 91
|
syl5ibcom |
|
| 93 |
|
hlop |
|
| 94 |
93
|
adantr |
|
| 95 |
1 61
|
latmcl |
|
| 96 |
31 34 85 95
|
syl3anc |
|
| 97 |
1 2 4
|
ople0 |
|
| 98 |
94 96 97
|
syl2anc |
|
| 99 |
92 98
|
sylibd |
|
| 100 |
83 99
|
sylbid |
|
| 101 |
100
|
imp |
|
| 102 |
101
|
adantrl |
|
| 103 |
102
|
adantrr |
|
| 104 |
1 2 61
|
latmle2 |
|
| 105 |
31 8 68 104
|
syl3anc |
|
| 106 |
1 3
|
latjcom |
|
| 107 |
31 66 34 106
|
syl3anc |
|
| 108 |
105 107
|
breqtrd |
|
| 109 |
108
|
adantr |
|
| 110 |
30
|
adantr |
|
| 111 |
|
simpr3 |
|
| 112 |
|
simpr1 |
|
| 113 |
1 5
|
atbase |
|
| 114 |
112 113
|
syl |
|
| 115 |
1 61
|
latmcom |
|
| 116 |
110 111 114 115
|
syl3anc |
|
| 117 |
116
|
eqeq1d |
|
| 118 |
1 2 3 61 4 5
|
hlexch3 |
|
| 119 |
118
|
3expia |
|
| 120 |
117 119
|
sylbid |
|
| 121 |
77 103 109 120
|
syl3c |
|
| 122 |
71 121
|
jca |
|
| 123 |
122
|
ex |
|
| 124 |
64 123
|
jcad |
|
| 125 |
|
breq1 |
|
| 126 |
|
oveq2 |
|
| 127 |
126
|
breq2d |
|
| 128 |
125 127
|
anbi12d |
|
| 129 |
128
|
rspcev |
|
| 130 |
124 129
|
syl6 |
|
| 131 |
130
|
expd |
|
| 132 |
60 131
|
biimtrid |
|
| 133 |
56 132
|
syl7 |
|
| 134 |
29 55 133
|
ecase3d |
|