Metamath Proof Explorer


Theorem cvrat4

Description: A condition implying existence of an atom with the properties shown. Lemma 3.2.20 in PtakPulmannova p. 68. Also Lemma 9.2(delta) in MaedaMaeda p. 41. ( atcvat4i analog.) (Contributed by NM, 30-Nov-2011)

Ref Expression
Hypotheses cvrat4.b B = Base K
cvrat4.l ˙ = K
cvrat4.j ˙ = join K
cvrat4.z 0 ˙ = 0. K
cvrat4.a A = Atoms K
Assertion cvrat4 K HL X B P A Q A X 0 ˙ P ˙ X ˙ Q r A r ˙ X P ˙ Q ˙ r

Proof

Step Hyp Ref Expression
1 cvrat4.b B = Base K
2 cvrat4.l ˙ = K
3 cvrat4.j ˙ = join K
4 cvrat4.z 0 ˙ = 0. K
5 cvrat4.a A = Atoms K
6 hlatl K HL K AtLat
7 6 adantr K HL X B P A Q A K AtLat
8 simpr1 K HL X B P A Q A X B
9 1 2 4 5 atlex K AtLat X B X 0 ˙ r A r ˙ X
10 9 3exp K AtLat X B X 0 ˙ r A r ˙ X
11 7 8 10 sylc K HL X B P A Q A X 0 ˙ r A r ˙ X
12 11 adantr K HL X B P A Q A P = Q X 0 ˙ r A r ˙ X
13 simpll K HL X B P A Q A r A K HL
14 simplr3 K HL X B P A Q A r A Q A
15 simpr K HL X B P A Q A r A r A
16 2 3 5 hlatlej1 K HL Q A r A Q ˙ Q ˙ r
17 13 14 15 16 syl3anc K HL X B P A Q A r A Q ˙ Q ˙ r
18 breq1 P = Q P ˙ Q ˙ r Q ˙ Q ˙ r
19 17 18 syl5ibr P = Q K HL X B P A Q A r A P ˙ Q ˙ r
20 19 expd P = Q K HL X B P A Q A r A P ˙ Q ˙ r
21 20 impcom K HL X B P A Q A P = Q r A P ˙ Q ˙ r
22 21 anim2d K HL X B P A Q A P = Q r ˙ X r A r ˙ X P ˙ Q ˙ r
23 22 expcomd K HL X B P A Q A P = Q r A r ˙ X r ˙ X P ˙ Q ˙ r
24 23 reximdvai K HL X B P A Q A P = Q r A r ˙ X r A r ˙ X P ˙ Q ˙ r
25 12 24 syld K HL X B P A Q A P = Q X 0 ˙ r A r ˙ X P ˙ Q ˙ r
26 25 ex K HL X B P A Q A P = Q X 0 ˙ r A r ˙ X P ˙ Q ˙ r
27 26 a1i P ˙ X ˙ Q K HL X B P A Q A P = Q X 0 ˙ r A r ˙ X P ˙ Q ˙ r
28 27 com4l K HL X B P A Q A P = Q X 0 ˙ P ˙ X ˙ Q r A r ˙ X P ˙ Q ˙ r
29 28 imp4a K HL X B P A Q A P = Q X 0 ˙ P ˙ X ˙ Q r A r ˙ X P ˙ Q ˙ r
30 hllat K HL K Lat
31 30 adantr K HL X B P A Q A K Lat
32 simpr3 K HL X B P A Q A Q A
33 1 5 atbase Q A Q B
34 32 33 syl K HL X B P A Q A Q B
35 1 2 3 latleeqj2 K Lat Q B X B Q ˙ X X ˙ Q = X
36 31 34 8 35 syl3anc K HL X B P A Q A Q ˙ X X ˙ Q = X
37 36 biimpa K HL X B P A Q A Q ˙ X X ˙ Q = X
38 37 breq2d K HL X B P A Q A Q ˙ X P ˙ X ˙ Q P ˙ X
39 38 biimpa K HL X B P A Q A Q ˙ X P ˙ X ˙ Q P ˙ X
40 39 expl K HL X B P A Q A Q ˙ X P ˙ X ˙ Q P ˙ X
41 simpl K HL X B P A Q A K HL
42 simpr2 K HL X B P A Q A P A
43 2 3 5 hlatlej2 K HL Q A P A P ˙ Q ˙ P
44 41 32 42 43 syl3anc K HL X B P A Q A P ˙ Q ˙ P
45 40 44 jctird K HL X B P A Q A Q ˙ X P ˙ X ˙ Q P ˙ X P ˙ Q ˙ P
46 45 42 jctild K HL X B P A Q A Q ˙ X P ˙ X ˙ Q P A P ˙ X P ˙ Q ˙ P
47 46 impl K HL X B P A Q A Q ˙ X P ˙ X ˙ Q P A P ˙ X P ˙ Q ˙ P
48 breq1 r = P r ˙ X P ˙ X
49 oveq2 r = P Q ˙ r = Q ˙ P
50 49 breq2d r = P P ˙ Q ˙ r P ˙ Q ˙ P
51 48 50 anbi12d r = P r ˙ X P ˙ Q ˙ r P ˙ X P ˙ Q ˙ P
52 51 rspcev P A P ˙ X P ˙ Q ˙ P r A r ˙ X P ˙ Q ˙ r
53 47 52 syl K HL X B P A Q A Q ˙ X P ˙ X ˙ Q r A r ˙ X P ˙ Q ˙ r
54 53 adantrl K HL X B P A Q A Q ˙ X X 0 ˙ P ˙ X ˙ Q r A r ˙ X P ˙ Q ˙ r
55 54 exp31 K HL X B P A Q A Q ˙ X X 0 ˙ P ˙ X ˙ Q r A r ˙ X P ˙ Q ˙ r
56 simpr X 0 ˙ P ˙ X ˙ Q P ˙ X ˙ Q
57 ioran ¬ P = Q Q ˙ X ¬ P = Q ¬ Q ˙ X
58 df-ne P Q ¬ P = Q
59 58 anbi1i P Q ¬ Q ˙ X ¬ P = Q ¬ Q ˙ X
60 57 59 bitr4i ¬ P = Q Q ˙ X P Q ¬ Q ˙ X
61 eqid meet K = meet K
62 1 2 3 61 5 cvrat3 K HL X B P A Q A P Q ¬ Q ˙ X P ˙ X ˙ Q X meet K P ˙ Q A
63 62 3expd K HL X B P A Q A P Q ¬ Q ˙ X P ˙ X ˙ Q X meet K P ˙ Q A
64 63 imp4c K HL X B P A Q A P Q ¬ Q ˙ X P ˙ X ˙ Q X meet K P ˙ Q A
65 1 5 atbase P A P B
66 42 65 syl K HL X B P A Q A P B
67 1 3 latjcl K Lat P B Q B P ˙ Q B
68 31 66 34 67 syl3anc K HL X B P A Q A P ˙ Q B
69 1 2 61 latmle1 K Lat X B P ˙ Q B X meet K P ˙ Q ˙ X
70 31 8 68 69 syl3anc K HL X B P A Q A X meet K P ˙ Q ˙ X
71 70 adantr K HL X B P A Q A P Q ¬ Q ˙ X P ˙ X ˙ Q X meet K P ˙ Q ˙ X
72 simpll K HL X B P A Q A P Q ¬ Q ˙ X P ˙ X ˙ Q K HL
73 63 imp44 K HL X B P A Q A P Q ¬ Q ˙ X P ˙ X ˙ Q X meet K P ˙ Q A
74 simplr2 K HL X B P A Q A P Q ¬ Q ˙ X P ˙ X ˙ Q P A
75 34 adantr K HL X B P A Q A P Q ¬ Q ˙ X P ˙ X ˙ Q Q B
76 73 74 75 3jca K HL X B P A Q A P Q ¬ Q ˙ X P ˙ X ˙ Q X meet K P ˙ Q A P A Q B
77 72 76 jca K HL X B P A Q A P Q ¬ Q ˙ X P ˙ X ˙ Q K HL X meet K P ˙ Q A P A Q B
78 1 2 61 4 5 atnle K AtLat Q A X B ¬ Q ˙ X Q meet K X = 0 ˙
79 7 32 8 78 syl3anc K HL X B P A Q A ¬ Q ˙ X Q meet K X = 0 ˙
80 1 61 latmcom K Lat Q B X B Q meet K X = X meet K Q
81 31 34 8 80 syl3anc K HL X B P A Q A Q meet K X = X meet K Q
82 81 eqeq1d K HL X B P A Q A Q meet K X = 0 ˙ X meet K Q = 0 ˙
83 79 82 bitrd K HL X B P A Q A ¬ Q ˙ X X meet K Q = 0 ˙
84 1 61 latmcl K Lat X B P ˙ Q B X meet K P ˙ Q B
85 31 8 68 84 syl3anc K HL X B P A Q A X meet K P ˙ Q B
86 85 8 34 3jca K HL X B P A Q A X meet K P ˙ Q B X B Q B
87 31 86 jca K HL X B P A Q A K Lat X meet K P ˙ Q B X B Q B
88 1 2 61 latmlem2 K Lat X meet K P ˙ Q B X B Q B X meet K P ˙ Q ˙ X Q meet K X meet K P ˙ Q ˙ Q meet K X
89 87 70 88 sylc K HL X B P A Q A Q meet K X meet K P ˙ Q ˙ Q meet K X
90 89 81 breqtrd K HL X B P A Q A Q meet K X meet K P ˙ Q ˙ X meet K Q
91 breq2 X meet K Q = 0 ˙ Q meet K X meet K P ˙ Q ˙ X meet K Q Q meet K X meet K P ˙ Q ˙ 0 ˙
92 90 91 syl5ibcom K HL X B P A Q A X meet K Q = 0 ˙ Q meet K X meet K P ˙ Q ˙ 0 ˙
93 hlop K HL K OP
94 93 adantr K HL X B P A Q A K OP
95 1 61 latmcl K Lat Q B X meet K P ˙ Q B Q meet K X meet K P ˙ Q B
96 31 34 85 95 syl3anc K HL X B P A Q A Q meet K X meet K P ˙ Q B
97 1 2 4 ople0 K OP Q meet K X meet K P ˙ Q B Q meet K X meet K P ˙ Q ˙ 0 ˙ Q meet K X meet K P ˙ Q = 0 ˙
98 94 96 97 syl2anc K HL X B P A Q A Q meet K X meet K P ˙ Q ˙ 0 ˙ Q meet K X meet K P ˙ Q = 0 ˙
99 92 98 sylibd K HL X B P A Q A X meet K Q = 0 ˙ Q meet K X meet K P ˙ Q = 0 ˙
100 83 99 sylbid K HL X B P A Q A ¬ Q ˙ X Q meet K X meet K P ˙ Q = 0 ˙
101 100 imp K HL X B P A Q A ¬ Q ˙ X Q meet K X meet K P ˙ Q = 0 ˙
102 101 adantrl K HL X B P A Q A P Q ¬ Q ˙ X Q meet K X meet K P ˙ Q = 0 ˙
103 102 adantrr K HL X B P A Q A P Q ¬ Q ˙ X P ˙ X ˙ Q Q meet K X meet K P ˙ Q = 0 ˙
104 1 2 61 latmle2 K Lat X B P ˙ Q B X meet K P ˙ Q ˙ P ˙ Q
105 31 8 68 104 syl3anc K HL X B P A Q A X meet K P ˙ Q ˙ P ˙ Q
106 1 3 latjcom K Lat P B Q B P ˙ Q = Q ˙ P
107 31 66 34 106 syl3anc K HL X B P A Q A P ˙ Q = Q ˙ P
108 105 107 breqtrd K HL X B P A Q A X meet K P ˙ Q ˙ Q ˙ P
109 108 adantr K HL X B P A Q A P Q ¬ Q ˙ X P ˙ X ˙ Q X meet K P ˙ Q ˙ Q ˙ P
110 30 adantr K HL X meet K P ˙ Q A P A Q B K Lat
111 simpr3 K HL X meet K P ˙ Q A P A Q B Q B
112 simpr1 K HL X meet K P ˙ Q A P A Q B X meet K P ˙ Q A
113 1 5 atbase X meet K P ˙ Q A X meet K P ˙ Q B
114 112 113 syl K HL X meet K P ˙ Q A P A Q B X meet K P ˙ Q B
115 1 61 latmcom K Lat Q B X meet K P ˙ Q B Q meet K X meet K P ˙ Q = X meet K P ˙ Q meet K Q
116 110 111 114 115 syl3anc K HL X meet K P ˙ Q A P A Q B Q meet K X meet K P ˙ Q = X meet K P ˙ Q meet K Q
117 116 eqeq1d K HL X meet K P ˙ Q A P A Q B Q meet K X meet K P ˙ Q = 0 ˙ X meet K P ˙ Q meet K Q = 0 ˙
118 1 2 3 61 4 5 hlexch3 K HL X meet K P ˙ Q A P A Q B X meet K P ˙ Q meet K Q = 0 ˙ X meet K P ˙ Q ˙ Q ˙ P P ˙ Q ˙ X meet K P ˙ Q
119 118 3expia K HL X meet K P ˙ Q A P A Q B X meet K P ˙ Q meet K Q = 0 ˙ X meet K P ˙ Q ˙ Q ˙ P P ˙ Q ˙ X meet K P ˙ Q
120 117 119 sylbid K HL X meet K P ˙ Q A P A Q B Q meet K X meet K P ˙ Q = 0 ˙ X meet K P ˙ Q ˙ Q ˙ P P ˙ Q ˙ X meet K P ˙ Q
121 77 103 109 120 syl3c K HL X B P A Q A P Q ¬ Q ˙ X P ˙ X ˙ Q P ˙ Q ˙ X meet K P ˙ Q
122 71 121 jca K HL X B P A Q A P Q ¬ Q ˙ X P ˙ X ˙ Q X meet K P ˙ Q ˙ X P ˙ Q ˙ X meet K P ˙ Q
123 122 ex K HL X B P A Q A P Q ¬ Q ˙ X P ˙ X ˙ Q X meet K P ˙ Q ˙ X P ˙ Q ˙ X meet K P ˙ Q
124 64 123 jcad K HL X B P A Q A P Q ¬ Q ˙ X P ˙ X ˙ Q X meet K P ˙ Q A X meet K P ˙ Q ˙ X P ˙ Q ˙ X meet K P ˙ Q
125 breq1 r = X meet K P ˙ Q r ˙ X X meet K P ˙ Q ˙ X
126 oveq2 r = X meet K P ˙ Q Q ˙ r = Q ˙ X meet K P ˙ Q
127 126 breq2d r = X meet K P ˙ Q P ˙ Q ˙ r P ˙ Q ˙ X meet K P ˙ Q
128 125 127 anbi12d r = X meet K P ˙ Q r ˙ X P ˙ Q ˙ r X meet K P ˙ Q ˙ X P ˙ Q ˙ X meet K P ˙ Q
129 128 rspcev X meet K P ˙ Q A X meet K P ˙ Q ˙ X P ˙ Q ˙ X meet K P ˙ Q r A r ˙ X P ˙ Q ˙ r
130 124 129 syl6 K HL X B P A Q A P Q ¬ Q ˙ X P ˙ X ˙ Q r A r ˙ X P ˙ Q ˙ r
131 130 expd K HL X B P A Q A P Q ¬ Q ˙ X P ˙ X ˙ Q r A r ˙ X P ˙ Q ˙ r
132 60 131 syl5bi K HL X B P A Q A ¬ P = Q Q ˙ X P ˙ X ˙ Q r A r ˙ X P ˙ Q ˙ r
133 56 132 syl7 K HL X B P A Q A ¬ P = Q Q ˙ X X 0 ˙ P ˙ X ˙ Q r A r ˙ X P ˙ Q ˙ r
134 29 55 133 ecase3d K HL X B P A Q A X 0 ˙ P ˙ X ˙ Q r A r ˙ X P ˙ Q ˙ r