| Step |
Hyp |
Ref |
Expression |
| 1 |
|
rpvmasum.z |
|
| 2 |
|
rpvmasum.l |
|
| 3 |
|
rpvmasum.a |
|
| 4 |
|
rpvmasum.g |
|
| 5 |
|
rpvmasum.d |
|
| 6 |
|
rpvmasum.1 |
|
| 7 |
|
dchrisum.b |
|
| 8 |
|
dchrisum.n1 |
|
| 9 |
|
dchrisum.2 |
|
| 10 |
|
dchrisum.3 |
|
| 11 |
|
dchrisum.4 |
|
| 12 |
|
dchrisum.5 |
|
| 13 |
|
dchrisum.6 |
|
| 14 |
|
dchrisum.7 |
|
| 15 |
11
|
ralrimiva |
|
| 16 |
|
nfcsb1v |
|
| 17 |
16
|
nfel1 |
|
| 18 |
|
csbeq1a |
|
| 19 |
18
|
eleq1d |
|
| 20 |
17 19
|
rspc |
|
| 21 |
15 20
|
syl5com |
|
| 22 |
|
eqid |
|
| 23 |
10
|
nnred |
|
| 24 |
|
elicopnf |
|
| 25 |
23 24
|
syl |
|
| 26 |
25
|
simprbda |
|
| 27 |
26
|
flcld |
|
| 28 |
27
|
peano2zd |
|
| 29 |
|
nnuz |
|
| 30 |
|
1zzd |
|
| 31 |
|
nnrp |
|
| 32 |
31
|
ssriv |
|
| 33 |
|
eqid |
|
| 34 |
33 11
|
dmmptd |
|
| 35 |
32 34
|
sseqtrrid |
|
| 36 |
29 30 13 35
|
rlimclim1 |
|
| 37 |
36
|
adantr |
|
| 38 |
|
0red |
|
| 39 |
23
|
adantr |
|
| 40 |
10
|
nngt0d |
|
| 41 |
40
|
adantr |
|
| 42 |
25
|
simplbda |
|
| 43 |
38 39 26 41 42
|
ltletrd |
|
| 44 |
26 43
|
elrpd |
|
| 45 |
15
|
adantr |
|
| 46 |
44 45 20
|
sylc |
|
| 47 |
46
|
recnd |
|
| 48 |
|
ssid |
|
| 49 |
|
fvex |
|
| 50 |
48 49
|
climconst2 |
|
| 51 |
47 28 50
|
syl2anc |
|
| 52 |
44
|
rpge0d |
|
| 53 |
|
flge0nn0 |
|
| 54 |
26 52 53
|
syl2anc |
|
| 55 |
|
nn0p1nn |
|
| 56 |
54 55
|
syl |
|
| 57 |
|
eluznn |
|
| 58 |
56 57
|
sylan |
|
| 59 |
58
|
nnrpd |
|
| 60 |
15
|
ad2antrr |
|
| 61 |
|
nfcsb1v |
|
| 62 |
61
|
nfel1 |
|
| 63 |
|
csbeq1a |
|
| 64 |
63
|
eleq1d |
|
| 65 |
62 64
|
rspc |
|
| 66 |
59 60 65
|
sylc |
|
| 67 |
33
|
fvmpts |
|
| 68 |
59 66 67
|
syl2anc |
|
| 69 |
68 66
|
eqeltrd |
|
| 70 |
|
fvconst2g |
|
| 71 |
46 70
|
sylan |
|
| 72 |
46
|
adantr |
|
| 73 |
71 72
|
eqeltrd |
|
| 74 |
44
|
adantr |
|
| 75 |
12
|
3expia |
|
| 76 |
75
|
ralrimivva |
|
| 77 |
76
|
ad2antrr |
|
| 78 |
|
nfcv |
|
| 79 |
|
nfv |
|
| 80 |
|
nfcv |
|
| 81 |
|
nfcv |
|
| 82 |
80 81 16
|
nfbr |
|
| 83 |
79 82
|
nfim |
|
| 84 |
78 83
|
nfralw |
|
| 85 |
|
breq2 |
|
| 86 |
|
breq1 |
|
| 87 |
85 86
|
anbi12d |
|
| 88 |
18
|
breq2d |
|
| 89 |
87 88
|
imbi12d |
|
| 90 |
89
|
ralbidv |
|
| 91 |
84 90
|
rspc |
|
| 92 |
74 77 91
|
sylc |
|
| 93 |
42
|
adantr |
|
| 94 |
26
|
adantr |
|
| 95 |
|
reflcl |
|
| 96 |
|
peano2re |
|
| 97 |
94 95 96
|
3syl |
|
| 98 |
58
|
nnred |
|
| 99 |
|
fllep1 |
|
| 100 |
26 99
|
syl |
|
| 101 |
100
|
adantr |
|
| 102 |
|
eluzle |
|
| 103 |
102
|
adantl |
|
| 104 |
94 97 98 101 103
|
letrd |
|
| 105 |
93 104
|
jca |
|
| 106 |
|
breq2 |
|
| 107 |
106
|
anbi2d |
|
| 108 |
|
eqvisset |
|
| 109 |
|
equtr2 |
|
| 110 |
9
|
equcoms |
|
| 111 |
109 110
|
syl |
|
| 112 |
108 111
|
csbied |
|
| 113 |
112
|
eqcomd |
|
| 114 |
113
|
breq1d |
|
| 115 |
107 114
|
imbi12d |
|
| 116 |
115
|
rspcv |
|
| 117 |
59 92 105 116
|
syl3c |
|
| 118 |
117 68 71
|
3brtr4d |
|
| 119 |
22 28 37 51 69 73 118
|
climle |
|
| 120 |
119
|
ex |
|
| 121 |
21 120
|
jca |
|