Metamath Proof Explorer


Theorem decpmatid

Description: The matrix consisting of the coefficients in the polynomial entries of the identity matrix is an identity or a zero matrix. (Contributed by AV, 28-Sep-2019) (Revised by AV, 2-Dec-2019)

Ref Expression
Hypotheses decpmatid.p P = Poly 1 R
decpmatid.c C = N Mat P
decpmatid.i I = 1 C
decpmatid.a A = N Mat R
decpmatid.0 0 ˙ = 0 A
decpmatid.1 1 ˙ = 1 A
Assertion decpmatid N Fin R Ring K 0 I decompPMat K = if K = 0 1 ˙ 0 ˙

Proof

Step Hyp Ref Expression
1 decpmatid.p P = Poly 1 R
2 decpmatid.c C = N Mat P
3 decpmatid.i I = 1 C
4 decpmatid.a A = N Mat R
5 decpmatid.0 0 ˙ = 0 A
6 decpmatid.1 1 ˙ = 1 A
7 1 2 pmatring N Fin R Ring C Ring
8 7 3adant3 N Fin R Ring K 0 C Ring
9 eqid Base C = Base C
10 9 3 ringidcl C Ring I Base C
11 8 10 syl N Fin R Ring K 0 I Base C
12 simp3 N Fin R Ring K 0 K 0
13 2 9 decpmatval I Base C K 0 I decompPMat K = i N , j N coe 1 i I j K
14 11 12 13 syl2anc N Fin R Ring K 0 I decompPMat K = i N , j N coe 1 i I j K
15 eqid 0 P = 0 P
16 eqid 1 P = 1 P
17 simp11 N Fin R Ring K 0 i N j N N Fin
18 simp12 N Fin R Ring K 0 i N j N R Ring
19 simp2 N Fin R Ring K 0 i N j N i N
20 simp3 N Fin R Ring K 0 i N j N j N
21 1 2 15 16 17 18 19 20 3 pmat1ovd N Fin R Ring K 0 i N j N i I j = if i = j 1 P 0 P
22 21 fveq2d N Fin R Ring K 0 i N j N coe 1 i I j = coe 1 if i = j 1 P 0 P
23 22 fveq1d N Fin R Ring K 0 i N j N coe 1 i I j K = coe 1 if i = j 1 P 0 P K
24 fvif coe 1 if i = j 1 P 0 P = if i = j coe 1 1 P coe 1 0 P
25 24 fveq1i coe 1 if i = j 1 P 0 P K = if i = j coe 1 1 P coe 1 0 P K
26 iffv if i = j coe 1 1 P coe 1 0 P K = if i = j coe 1 1 P K coe 1 0 P K
27 25 26 eqtri coe 1 if i = j 1 P 0 P K = if i = j coe 1 1 P K coe 1 0 P K
28 eqid var 1 R = var 1 R
29 eqid mulGrp P = mulGrp P
30 eqid mulGrp P = mulGrp P
31 1 28 29 30 ply1idvr1 R Ring 0 mulGrp P var 1 R = 1 P
32 31 3ad2ant2 N Fin R Ring K 0 0 mulGrp P var 1 R = 1 P
33 32 eqcomd N Fin R Ring K 0 1 P = 0 mulGrp P var 1 R
34 33 fveq2d N Fin R Ring K 0 coe 1 1 P = coe 1 0 mulGrp P var 1 R
35 34 fveq1d N Fin R Ring K 0 coe 1 1 P K = coe 1 0 mulGrp P var 1 R K
36 1 ply1lmod R Ring P LMod
37 36 3ad2ant2 N Fin R Ring K 0 P LMod
38 0nn0 0 0
39 eqid Base P = Base P
40 1 28 29 30 39 ply1moncl R Ring 0 0 0 mulGrp P var 1 R Base P
41 38 40 mpan2 R Ring 0 mulGrp P var 1 R Base P
42 41 3ad2ant2 N Fin R Ring K 0 0 mulGrp P var 1 R Base P
43 eqid Scalar P = Scalar P
44 eqid P = P
45 eqid 1 Scalar P = 1 Scalar P
46 39 43 44 45 lmodvs1 P LMod 0 mulGrp P var 1 R Base P 1 Scalar P P 0 mulGrp P var 1 R = 0 mulGrp P var 1 R
47 37 42 46 syl2anc N Fin R Ring K 0 1 Scalar P P 0 mulGrp P var 1 R = 0 mulGrp P var 1 R
48 47 eqcomd N Fin R Ring K 0 0 mulGrp P var 1 R = 1 Scalar P P 0 mulGrp P var 1 R
49 48 fveq2d N Fin R Ring K 0 coe 1 0 mulGrp P var 1 R = coe 1 1 Scalar P P 0 mulGrp P var 1 R
50 49 fveq1d N Fin R Ring K 0 coe 1 0 mulGrp P var 1 R K = coe 1 1 Scalar P P 0 mulGrp P var 1 R K
51 simp2 N Fin R Ring K 0 R Ring
52 1 ply1sca R Ring R = Scalar P
53 52 3ad2ant2 N Fin R Ring K 0 R = Scalar P
54 53 eqcomd N Fin R Ring K 0 Scalar P = R
55 54 fveq2d N Fin R Ring K 0 1 Scalar P = 1 R
56 eqid Base R = Base R
57 eqid 1 R = 1 R
58 56 57 ringidcl R Ring 1 R Base R
59 58 3ad2ant2 N Fin R Ring K 0 1 R Base R
60 55 59 eqeltrd N Fin R Ring K 0 1 Scalar P Base R
61 38 a1i N Fin R Ring K 0 0 0
62 eqid 0 R = 0 R
63 62 56 1 28 44 29 30 coe1tm R Ring 1 Scalar P Base R 0 0 coe 1 1 Scalar P P 0 mulGrp P var 1 R = k 0 if k = 0 1 Scalar P 0 R
64 51 60 61 63 syl3anc N Fin R Ring K 0 coe 1 1 Scalar P P 0 mulGrp P var 1 R = k 0 if k = 0 1 Scalar P 0 R
65 eqeq1 k = K k = 0 K = 0
66 65 ifbid k = K if k = 0 1 Scalar P 0 R = if K = 0 1 Scalar P 0 R
67 66 adantl N Fin R Ring K 0 k = K if k = 0 1 Scalar P 0 R = if K = 0 1 Scalar P 0 R
68 fvex 1 Scalar P V
69 fvex 0 R V
70 68 69 ifex if K = 0 1 Scalar P 0 R V
71 70 a1i N Fin R Ring K 0 if K = 0 1 Scalar P 0 R V
72 64 67 12 71 fvmptd N Fin R Ring K 0 coe 1 1 Scalar P P 0 mulGrp P var 1 R K = if K = 0 1 Scalar P 0 R
73 35 50 72 3eqtrd N Fin R Ring K 0 coe 1 1 P K = if K = 0 1 Scalar P 0 R
74 1 15 62 coe1z R Ring coe 1 0 P = 0 × 0 R
75 74 3ad2ant2 N Fin R Ring K 0 coe 1 0 P = 0 × 0 R
76 75 fveq1d N Fin R Ring K 0 coe 1 0 P K = 0 × 0 R K
77 69 a1i N Fin R Ring K 0 0 R V
78 fvconst2g 0 R V K 0 0 × 0 R K = 0 R
79 77 12 78 syl2anc N Fin R Ring K 0 0 × 0 R K = 0 R
80 76 79 eqtrd N Fin R Ring K 0 coe 1 0 P K = 0 R
81 73 80 ifeq12d N Fin R Ring K 0 if i = j coe 1 1 P K coe 1 0 P K = if i = j if K = 0 1 Scalar P 0 R 0 R
82 81 3ad2ant1 N Fin R Ring K 0 i N j N if i = j coe 1 1 P K coe 1 0 P K = if i = j if K = 0 1 Scalar P 0 R 0 R
83 27 82 eqtrid N Fin R Ring K 0 i N j N coe 1 if i = j 1 P 0 P K = if i = j if K = 0 1 Scalar P 0 R 0 R
84 23 83 eqtrd N Fin R Ring K 0 i N j N coe 1 i I j K = if i = j if K = 0 1 Scalar P 0 R 0 R
85 84 mpoeq3dva N Fin R Ring K 0 i N , j N coe 1 i I j K = i N , j N if i = j if K = 0 1 Scalar P 0 R 0 R
86 53 adantl K = 0 N Fin R Ring K 0 R = Scalar P
87 86 eqcomd K = 0 N Fin R Ring K 0 Scalar P = R
88 87 fveq2d K = 0 N Fin R Ring K 0 1 Scalar P = 1 R
89 88 ifeq1d K = 0 N Fin R Ring K 0 if i = j 1 Scalar P 0 R = if i = j 1 R 0 R
90 89 mpoeq3dv K = 0 N Fin R Ring K 0 i N , j N if i = j 1 Scalar P 0 R = i N , j N if i = j 1 R 0 R
91 iftrue K = 0 if K = 0 1 Scalar P 0 R = 1 Scalar P
92 91 ifeq1d K = 0 if i = j if K = 0 1 Scalar P 0 R 0 R = if i = j 1 Scalar P 0 R
93 92 adantr K = 0 N Fin R Ring K 0 if i = j if K = 0 1 Scalar P 0 R 0 R = if i = j 1 Scalar P 0 R
94 93 mpoeq3dv K = 0 N Fin R Ring K 0 i N , j N if i = j if K = 0 1 Scalar P 0 R 0 R = i N , j N if i = j 1 Scalar P 0 R
95 4 57 62 mat1 N Fin R Ring 1 A = i N , j N if i = j 1 R 0 R
96 6 95 eqtrid N Fin R Ring 1 ˙ = i N , j N if i = j 1 R 0 R
97 96 3adant3 N Fin R Ring K 0 1 ˙ = i N , j N if i = j 1 R 0 R
98 97 adantl K = 0 N Fin R Ring K 0 1 ˙ = i N , j N if i = j 1 R 0 R
99 90 94 98 3eqtr4d K = 0 N Fin R Ring K 0 i N , j N if i = j if K = 0 1 Scalar P 0 R 0 R = 1 ˙
100 iftrue K = 0 if K = 0 1 ˙ 0 ˙ = 1 ˙
101 100 eqcomd K = 0 1 ˙ = if K = 0 1 ˙ 0 ˙
102 101 adantr K = 0 N Fin R Ring K 0 1 ˙ = if K = 0 1 ˙ 0 ˙
103 99 102 eqtrd K = 0 N Fin R Ring K 0 i N , j N if i = j if K = 0 1 Scalar P 0 R 0 R = if K = 0 1 ˙ 0 ˙
104 ifid if i = j 0 R 0 R = 0 R
105 104 a1i ¬ K = 0 N Fin R Ring K 0 if i = j 0 R 0 R = 0 R
106 105 mpoeq3dv ¬ K = 0 N Fin R Ring K 0 i N , j N if i = j 0 R 0 R = i N , j N 0 R
107 iffalse ¬ K = 0 if K = 0 1 Scalar P 0 R = 0 R
108 107 adantr ¬ K = 0 N Fin R Ring K 0 if K = 0 1 Scalar P 0 R = 0 R
109 108 ifeq1d ¬ K = 0 N Fin R Ring K 0 if i = j if K = 0 1 Scalar P 0 R 0 R = if i = j 0 R 0 R
110 109 mpoeq3dv ¬ K = 0 N Fin R Ring K 0 i N , j N if i = j if K = 0 1 Scalar P 0 R 0 R = i N , j N if i = j 0 R 0 R
111 3simpa N Fin R Ring K 0 N Fin R Ring
112 111 adantl ¬ K = 0 N Fin R Ring K 0 N Fin R Ring
113 4 62 mat0op N Fin R Ring 0 A = i N , j N 0 R
114 5 113 eqtrid N Fin R Ring 0 ˙ = i N , j N 0 R
115 112 114 syl ¬ K = 0 N Fin R Ring K 0 0 ˙ = i N , j N 0 R
116 106 110 115 3eqtr4d ¬ K = 0 N Fin R Ring K 0 i N , j N if i = j if K = 0 1 Scalar P 0 R 0 R = 0 ˙
117 iffalse ¬ K = 0 if K = 0 1 ˙ 0 ˙ = 0 ˙
118 117 eqcomd ¬ K = 0 0 ˙ = if K = 0 1 ˙ 0 ˙
119 118 adantr ¬ K = 0 N Fin R Ring K 0 0 ˙ = if K = 0 1 ˙ 0 ˙
120 116 119 eqtrd ¬ K = 0 N Fin R Ring K 0 i N , j N if i = j if K = 0 1 Scalar P 0 R 0 R = if K = 0 1 ˙ 0 ˙
121 103 120 pm2.61ian N Fin R Ring K 0 i N , j N if i = j if K = 0 1 Scalar P 0 R 0 R = if K = 0 1 ˙ 0 ˙
122 14 85 121 3eqtrd N Fin R Ring K 0 I decompPMat K = if K = 0 1 ˙ 0 ˙