Metamath Proof Explorer


Theorem decpmatid

Description: The matrix consisting of the coefficients in the polynomial entries of the identity matrix is an identity or a zero matrix. (Contributed by AV, 28-Sep-2019) (Revised by AV, 2-Dec-2019)

Ref Expression
Hypotheses decpmatid.p P=Poly1R
decpmatid.c C=NMatP
decpmatid.i I=1C
decpmatid.a A=NMatR
decpmatid.0 0˙=0A
decpmatid.1 1˙=1A
Assertion decpmatid NFinRRingK0IdecompPMatK=ifK=01˙0˙

Proof

Step Hyp Ref Expression
1 decpmatid.p P=Poly1R
2 decpmatid.c C=NMatP
3 decpmatid.i I=1C
4 decpmatid.a A=NMatR
5 decpmatid.0 0˙=0A
6 decpmatid.1 1˙=1A
7 1 2 pmatring NFinRRingCRing
8 7 3adant3 NFinRRingK0CRing
9 eqid BaseC=BaseC
10 9 3 ringidcl CRingIBaseC
11 8 10 syl NFinRRingK0IBaseC
12 simp3 NFinRRingK0K0
13 2 9 decpmatval IBaseCK0IdecompPMatK=iN,jNcoe1iIjK
14 11 12 13 syl2anc NFinRRingK0IdecompPMatK=iN,jNcoe1iIjK
15 eqid 0P=0P
16 eqid 1P=1P
17 simp11 NFinRRingK0iNjNNFin
18 simp12 NFinRRingK0iNjNRRing
19 simp2 NFinRRingK0iNjNiN
20 simp3 NFinRRingK0iNjNjN
21 1 2 15 16 17 18 19 20 3 pmat1ovd NFinRRingK0iNjNiIj=ifi=j1P0P
22 21 fveq2d NFinRRingK0iNjNcoe1iIj=coe1ifi=j1P0P
23 22 fveq1d NFinRRingK0iNjNcoe1iIjK=coe1ifi=j1P0PK
24 fvif coe1ifi=j1P0P=ifi=jcoe11Pcoe10P
25 24 fveq1i coe1ifi=j1P0PK=ifi=jcoe11Pcoe10PK
26 iffv ifi=jcoe11Pcoe10PK=ifi=jcoe11PKcoe10PK
27 25 26 eqtri coe1ifi=j1P0PK=ifi=jcoe11PKcoe10PK
28 eqid var1R=var1R
29 eqid mulGrpP=mulGrpP
30 eqid mulGrpP=mulGrpP
31 1 28 29 30 ply1idvr1 RRing0mulGrpPvar1R=1P
32 31 3ad2ant2 NFinRRingK00mulGrpPvar1R=1P
33 32 eqcomd NFinRRingK01P=0mulGrpPvar1R
34 33 fveq2d NFinRRingK0coe11P=coe10mulGrpPvar1R
35 34 fveq1d NFinRRingK0coe11PK=coe10mulGrpPvar1RK
36 1 ply1lmod RRingPLMod
37 36 3ad2ant2 NFinRRingK0PLMod
38 0nn0 00
39 eqid BaseP=BaseP
40 1 28 29 30 39 ply1moncl RRing000mulGrpPvar1RBaseP
41 38 40 mpan2 RRing0mulGrpPvar1RBaseP
42 41 3ad2ant2 NFinRRingK00mulGrpPvar1RBaseP
43 eqid ScalarP=ScalarP
44 eqid P=P
45 eqid 1ScalarP=1ScalarP
46 39 43 44 45 lmodvs1 PLMod0mulGrpPvar1RBaseP1ScalarPP0mulGrpPvar1R=0mulGrpPvar1R
47 37 42 46 syl2anc NFinRRingK01ScalarPP0mulGrpPvar1R=0mulGrpPvar1R
48 47 eqcomd NFinRRingK00mulGrpPvar1R=1ScalarPP0mulGrpPvar1R
49 48 fveq2d NFinRRingK0coe10mulGrpPvar1R=coe11ScalarPP0mulGrpPvar1R
50 49 fveq1d NFinRRingK0coe10mulGrpPvar1RK=coe11ScalarPP0mulGrpPvar1RK
51 simp2 NFinRRingK0RRing
52 1 ply1sca RRingR=ScalarP
53 52 3ad2ant2 NFinRRingK0R=ScalarP
54 53 eqcomd NFinRRingK0ScalarP=R
55 54 fveq2d NFinRRingK01ScalarP=1R
56 eqid BaseR=BaseR
57 eqid 1R=1R
58 56 57 ringidcl RRing1RBaseR
59 58 3ad2ant2 NFinRRingK01RBaseR
60 55 59 eqeltrd NFinRRingK01ScalarPBaseR
61 38 a1i NFinRRingK000
62 eqid 0R=0R
63 62 56 1 28 44 29 30 coe1tm RRing1ScalarPBaseR00coe11ScalarPP0mulGrpPvar1R=k0ifk=01ScalarP0R
64 51 60 61 63 syl3anc NFinRRingK0coe11ScalarPP0mulGrpPvar1R=k0ifk=01ScalarP0R
65 eqeq1 k=Kk=0K=0
66 65 ifbid k=Kifk=01ScalarP0R=ifK=01ScalarP0R
67 66 adantl NFinRRingK0k=Kifk=01ScalarP0R=ifK=01ScalarP0R
68 fvex 1ScalarPV
69 fvex 0RV
70 68 69 ifex ifK=01ScalarP0RV
71 70 a1i NFinRRingK0ifK=01ScalarP0RV
72 64 67 12 71 fvmptd NFinRRingK0coe11ScalarPP0mulGrpPvar1RK=ifK=01ScalarP0R
73 35 50 72 3eqtrd NFinRRingK0coe11PK=ifK=01ScalarP0R
74 1 15 62 coe1z RRingcoe10P=0×0R
75 74 3ad2ant2 NFinRRingK0coe10P=0×0R
76 75 fveq1d NFinRRingK0coe10PK=0×0RK
77 69 a1i NFinRRingK00RV
78 fvconst2g 0RVK00×0RK=0R
79 77 12 78 syl2anc NFinRRingK00×0RK=0R
80 76 79 eqtrd NFinRRingK0coe10PK=0R
81 73 80 ifeq12d NFinRRingK0ifi=jcoe11PKcoe10PK=ifi=jifK=01ScalarP0R0R
82 81 3ad2ant1 NFinRRingK0iNjNifi=jcoe11PKcoe10PK=ifi=jifK=01ScalarP0R0R
83 27 82 eqtrid NFinRRingK0iNjNcoe1ifi=j1P0PK=ifi=jifK=01ScalarP0R0R
84 23 83 eqtrd NFinRRingK0iNjNcoe1iIjK=ifi=jifK=01ScalarP0R0R
85 84 mpoeq3dva NFinRRingK0iN,jNcoe1iIjK=iN,jNifi=jifK=01ScalarP0R0R
86 53 adantl K=0NFinRRingK0R=ScalarP
87 86 eqcomd K=0NFinRRingK0ScalarP=R
88 87 fveq2d K=0NFinRRingK01ScalarP=1R
89 88 ifeq1d K=0NFinRRingK0ifi=j1ScalarP0R=ifi=j1R0R
90 89 mpoeq3dv K=0NFinRRingK0iN,jNifi=j1ScalarP0R=iN,jNifi=j1R0R
91 iftrue K=0ifK=01ScalarP0R=1ScalarP
92 91 ifeq1d K=0ifi=jifK=01ScalarP0R0R=ifi=j1ScalarP0R
93 92 adantr K=0NFinRRingK0ifi=jifK=01ScalarP0R0R=ifi=j1ScalarP0R
94 93 mpoeq3dv K=0NFinRRingK0iN,jNifi=jifK=01ScalarP0R0R=iN,jNifi=j1ScalarP0R
95 4 57 62 mat1 NFinRRing1A=iN,jNifi=j1R0R
96 6 95 eqtrid NFinRRing1˙=iN,jNifi=j1R0R
97 96 3adant3 NFinRRingK01˙=iN,jNifi=j1R0R
98 97 adantl K=0NFinRRingK01˙=iN,jNifi=j1R0R
99 90 94 98 3eqtr4d K=0NFinRRingK0iN,jNifi=jifK=01ScalarP0R0R=1˙
100 iftrue K=0ifK=01˙0˙=1˙
101 100 eqcomd K=01˙=ifK=01˙0˙
102 101 adantr K=0NFinRRingK01˙=ifK=01˙0˙
103 99 102 eqtrd K=0NFinRRingK0iN,jNifi=jifK=01ScalarP0R0R=ifK=01˙0˙
104 ifid ifi=j0R0R=0R
105 104 a1i ¬K=0NFinRRingK0ifi=j0R0R=0R
106 105 mpoeq3dv ¬K=0NFinRRingK0iN,jNifi=j0R0R=iN,jN0R
107 iffalse ¬K=0ifK=01ScalarP0R=0R
108 107 adantr ¬K=0NFinRRingK0ifK=01ScalarP0R=0R
109 108 ifeq1d ¬K=0NFinRRingK0ifi=jifK=01ScalarP0R0R=ifi=j0R0R
110 109 mpoeq3dv ¬K=0NFinRRingK0iN,jNifi=jifK=01ScalarP0R0R=iN,jNifi=j0R0R
111 3simpa NFinRRingK0NFinRRing
112 111 adantl ¬K=0NFinRRingK0NFinRRing
113 4 62 mat0op NFinRRing0A=iN,jN0R
114 5 113 eqtrid NFinRRing0˙=iN,jN0R
115 112 114 syl ¬K=0NFinRRingK00˙=iN,jN0R
116 106 110 115 3eqtr4d ¬K=0NFinRRingK0iN,jNifi=jifK=01ScalarP0R0R=0˙
117 iffalse ¬K=0ifK=01˙0˙=0˙
118 117 eqcomd ¬K=00˙=ifK=01˙0˙
119 118 adantr ¬K=0NFinRRingK00˙=ifK=01˙0˙
120 116 119 eqtrd ¬K=0NFinRRingK0iN,jNifi=jifK=01ScalarP0R0R=ifK=01˙0˙
121 103 120 pm2.61ian NFinRRingK0iN,jNifi=jifK=01ScalarP0R0R=ifK=01˙0˙
122 14 85 121 3eqtrd NFinRRingK0IdecompPMatK=ifK=01˙0˙