Metamath Proof Explorer


Theorem dfcgra2

Description: This is the full statement of definition 11.2 of Schwabhauser p. 95. This proof serves to confirm that the definition we have chosen, df-cgra is indeed equivalent to the textbook's definition. (Contributed by Thierry Arnoux, 2-Aug-2020)

Ref Expression
Hypotheses dfcgra2.p P=BaseG
dfcgra2.i I=ItvG
dfcgra2.m -˙=distG
dfcgra2.g φG𝒢Tarski
dfcgra2.a φAP
dfcgra2.b φBP
dfcgra2.c φCP
dfcgra2.d φDP
dfcgra2.e φEP
dfcgra2.f φFP
Assertion dfcgra2 φ⟨“ABC”⟩𝒢G⟨“DEF”⟩ABCBDEFEaPcPdPfPABIaA-˙a=E-˙DCBIcC-˙c=E-˙FDEIdD-˙d=B-˙AFEIfF-˙f=B-˙Ca-˙c=d-˙f

Proof

Step Hyp Ref Expression
1 dfcgra2.p P=BaseG
2 dfcgra2.i I=ItvG
3 dfcgra2.m -˙=distG
4 dfcgra2.g φG𝒢Tarski
5 dfcgra2.a φAP
6 dfcgra2.b φBP
7 dfcgra2.c φCP
8 dfcgra2.d φDP
9 dfcgra2.e φEP
10 dfcgra2.f φFP
11 eqid hl𝒢G=hl𝒢G
12 4 adantr φ⟨“ABC”⟩𝒢G⟨“DEF”⟩G𝒢Tarski
13 5 adantr φ⟨“ABC”⟩𝒢G⟨“DEF”⟩AP
14 6 adantr φ⟨“ABC”⟩𝒢G⟨“DEF”⟩BP
15 7 adantr φ⟨“ABC”⟩𝒢G⟨“DEF”⟩CP
16 8 adantr φ⟨“ABC”⟩𝒢G⟨“DEF”⟩DP
17 9 adantr φ⟨“ABC”⟩𝒢G⟨“DEF”⟩EP
18 10 adantr φ⟨“ABC”⟩𝒢G⟨“DEF”⟩FP
19 simpr φ⟨“ABC”⟩𝒢G⟨“DEF”⟩⟨“ABC”⟩𝒢G⟨“DEF”⟩
20 1 2 11 12 13 14 15 16 17 18 19 cgrane1 φ⟨“ABC”⟩𝒢G⟨“DEF”⟩AB
21 1 2 11 12 13 14 15 16 17 18 19 cgrane2 φ⟨“ABC”⟩𝒢G⟨“DEF”⟩BC
22 21 necomd φ⟨“ABC”⟩𝒢G⟨“DEF”⟩CB
23 20 22 jca φ⟨“ABC”⟩𝒢G⟨“DEF”⟩ABCB
24 1 2 11 12 13 14 15 16 17 18 19 cgrane3 φ⟨“ABC”⟩𝒢G⟨“DEF”⟩ED
25 24 necomd φ⟨“ABC”⟩𝒢G⟨“DEF”⟩DE
26 1 2 11 12 13 14 15 16 17 18 19 cgrane4 φ⟨“ABC”⟩𝒢G⟨“DEF”⟩EF
27 26 necomd φ⟨“ABC”⟩𝒢G⟨“DEF”⟩FE
28 25 27 jca φ⟨“ABC”⟩𝒢G⟨“DEF”⟩DEFE
29 simprl φ⟨“ABC”⟩𝒢G⟨“DEF”⟩aPcPdPfPABIaA-˙a=E-˙DCBIcC-˙c=E-˙FDEIdD-˙d=B-˙AFEIfF-˙f=B-˙CABIaA-˙a=E-˙DCBIcC-˙c=E-˙F
30 simprr φ⟨“ABC”⟩𝒢G⟨“DEF”⟩aPcPdPfPABIaA-˙a=E-˙DCBIcC-˙c=E-˙FDEIdD-˙d=B-˙AFEIfF-˙f=B-˙CDEIdD-˙d=B-˙AFEIfF-˙f=B-˙C
31 4 ad6antr φ⟨“ABC”⟩𝒢G⟨“DEF”⟩aPcPdPfPABIaA-˙a=E-˙DCBIcC-˙c=E-˙FDEIdD-˙d=B-˙AFEIfF-˙f=B-˙CG𝒢Tarski
32 simp-5r φ⟨“ABC”⟩𝒢G⟨“DEF”⟩aPcPdPfPABIaA-˙a=E-˙DCBIcC-˙c=E-˙FDEIdD-˙d=B-˙AFEIfF-˙f=B-˙CaP
33 6 ad6antr φ⟨“ABC”⟩𝒢G⟨“DEF”⟩aPcPdPfPABIaA-˙a=E-˙DCBIcC-˙c=E-˙FDEIdD-˙d=B-˙AFEIfF-˙f=B-˙CBP
34 simp-4r φ⟨“ABC”⟩𝒢G⟨“DEF”⟩aPcPdPfPABIaA-˙a=E-˙DCBIcC-˙c=E-˙FDEIdD-˙d=B-˙AFEIfF-˙f=B-˙CcP
35 simpllr φ⟨“ABC”⟩𝒢G⟨“DEF”⟩aPcPdPfPABIaA-˙a=E-˙DCBIcC-˙c=E-˙FDEIdD-˙d=B-˙AFEIfF-˙f=B-˙CdP
36 9 ad6antr φ⟨“ABC”⟩𝒢G⟨“DEF”⟩aPcPdPfPABIaA-˙a=E-˙DCBIcC-˙c=E-˙FDEIdD-˙d=B-˙AFEIfF-˙f=B-˙CEP
37 simplr φ⟨“ABC”⟩𝒢G⟨“DEF”⟩aPcPdPfPABIaA-˙a=E-˙DCBIcC-˙c=E-˙FDEIdD-˙d=B-˙AFEIfF-˙f=B-˙CfP
38 10 ad6antr φ⟨“ABC”⟩𝒢G⟨“DEF”⟩aPcPdPfPABIaA-˙a=E-˙DCBIcC-˙c=E-˙FDEIdD-˙d=B-˙AFEIfF-˙f=B-˙CFP
39 8 ad6antr φ⟨“ABC”⟩𝒢G⟨“DEF”⟩aPcPdPfPABIaA-˙a=E-˙DCBIcC-˙c=E-˙FDEIdD-˙d=B-˙AFEIfF-˙f=B-˙CDP
40 7 ad6antr φ⟨“ABC”⟩𝒢G⟨“DEF”⟩aPcPdPfPABIaA-˙a=E-˙DCBIcC-˙c=E-˙FDEIdD-˙d=B-˙AFEIfF-˙f=B-˙CCP
41 5 ad6antr φ⟨“ABC”⟩𝒢G⟨“DEF”⟩aPcPdPfPABIaA-˙a=E-˙DCBIcC-˙c=E-˙FDEIdD-˙d=B-˙AFEIfF-˙f=B-˙CAP
42 simp-6r φ⟨“ABC”⟩𝒢G⟨“DEF”⟩aPcPdPfPABIaA-˙a=E-˙DCBIcC-˙c=E-˙FDEIdD-˙d=B-˙AFEIfF-˙f=B-˙C⟨“ABC”⟩𝒢G⟨“DEF”⟩
43 1 2 31 11 41 33 40 39 36 38 42 cgracom φ⟨“ABC”⟩𝒢G⟨“DEF”⟩aPcPdPfPABIaA-˙a=E-˙DCBIcC-˙c=E-˙FDEIdD-˙d=B-˙AFEIfF-˙f=B-˙C⟨“DEF”⟩𝒢G⟨“ABC”⟩
44 29 simplld φ⟨“ABC”⟩𝒢G⟨“DEF”⟩aPcPdPfPABIaA-˙a=E-˙DCBIcC-˙c=E-˙FDEIdD-˙d=B-˙AFEIfF-˙f=B-˙CABIa
45 20 ad5antr φ⟨“ABC”⟩𝒢G⟨“DEF”⟩aPcPdPfPABIaA-˙a=E-˙DCBIcC-˙c=E-˙FDEIdD-˙d=B-˙AFEIfF-˙f=B-˙CAB
46 1 3 2 31 33 41 32 44 45 tgbtwnne φ⟨“ABC”⟩𝒢G⟨“DEF”⟩aPcPdPfPABIaA-˙a=E-˙DCBIcC-˙c=E-˙FDEIdD-˙d=B-˙AFEIfF-˙f=B-˙CBa
47 1 2 11 33 32 41 31 41 44 46 45 btwnhl1 φ⟨“ABC”⟩𝒢G⟨“DEF”⟩aPcPdPfPABIaA-˙a=E-˙DCBIcC-˙c=E-˙FDEIdD-˙d=B-˙AFEIfF-˙f=B-˙CAhl𝒢GBa
48 1 2 11 41 32 33 31 47 hlcomd φ⟨“ABC”⟩𝒢G⟨“DEF”⟩aPcPdPfPABIaA-˙a=E-˙DCBIcC-˙c=E-˙FDEIdD-˙d=B-˙AFEIfF-˙f=B-˙Cahl𝒢GBA
49 1 2 11 31 39 36 38 41 33 40 43 32 48 cgrahl1 φ⟨“ABC”⟩𝒢G⟨“DEF”⟩aPcPdPfPABIaA-˙a=E-˙DCBIcC-˙c=E-˙FDEIdD-˙d=B-˙AFEIfF-˙f=B-˙C⟨“DEF”⟩𝒢G⟨“aBC”⟩
50 29 simprld φ⟨“ABC”⟩𝒢G⟨“DEF”⟩aPcPdPfPABIaA-˙a=E-˙DCBIcC-˙c=E-˙FDEIdD-˙d=B-˙AFEIfF-˙f=B-˙CCBIc
51 22 ad5antr φ⟨“ABC”⟩𝒢G⟨“DEF”⟩aPcPdPfPABIaA-˙a=E-˙DCBIcC-˙c=E-˙FDEIdD-˙d=B-˙AFEIfF-˙f=B-˙CCB
52 1 3 2 31 33 40 34 50 51 tgbtwnne φ⟨“ABC”⟩𝒢G⟨“DEF”⟩aPcPdPfPABIaA-˙a=E-˙DCBIcC-˙c=E-˙FDEIdD-˙d=B-˙AFEIfF-˙f=B-˙CBc
53 1 2 11 33 34 40 31 41 50 52 51 btwnhl1 φ⟨“ABC”⟩𝒢G⟨“DEF”⟩aPcPdPfPABIaA-˙a=E-˙DCBIcC-˙c=E-˙FDEIdD-˙d=B-˙AFEIfF-˙f=B-˙CChl𝒢GBc
54 1 2 11 40 34 33 31 53 hlcomd φ⟨“ABC”⟩𝒢G⟨“DEF”⟩aPcPdPfPABIaA-˙a=E-˙DCBIcC-˙c=E-˙FDEIdD-˙d=B-˙AFEIfF-˙f=B-˙Cchl𝒢GBC
55 1 2 11 31 39 36 38 32 33 40 49 34 54 cgrahl2 φ⟨“ABC”⟩𝒢G⟨“DEF”⟩aPcPdPfPABIaA-˙a=E-˙DCBIcC-˙c=E-˙FDEIdD-˙d=B-˙AFEIfF-˙f=B-˙C⟨“DEF”⟩𝒢G⟨“aBc”⟩
56 1 2 31 11 39 36 38 32 33 34 55 cgracom φ⟨“ABC”⟩𝒢G⟨“DEF”⟩aPcPdPfPABIaA-˙a=E-˙DCBIcC-˙c=E-˙FDEIdD-˙d=B-˙AFEIfF-˙f=B-˙C⟨“aBc”⟩𝒢G⟨“DEF”⟩
57 30 simplld φ⟨“ABC”⟩𝒢G⟨“DEF”⟩aPcPdPfPABIaA-˙a=E-˙DCBIcC-˙c=E-˙FDEIdD-˙d=B-˙AFEIfF-˙f=B-˙CDEId
58 25 ad5antr φ⟨“ABC”⟩𝒢G⟨“DEF”⟩aPcPdPfPABIaA-˙a=E-˙DCBIcC-˙c=E-˙FDEIdD-˙d=B-˙AFEIfF-˙f=B-˙CDE
59 1 3 2 31 36 39 35 57 58 tgbtwnne φ⟨“ABC”⟩𝒢G⟨“DEF”⟩aPcPdPfPABIaA-˙a=E-˙DCBIcC-˙c=E-˙FDEIdD-˙d=B-˙AFEIfF-˙f=B-˙CEd
60 1 2 11 36 35 39 31 41 57 59 58 btwnhl1 φ⟨“ABC”⟩𝒢G⟨“DEF”⟩aPcPdPfPABIaA-˙a=E-˙DCBIcC-˙c=E-˙FDEIdD-˙d=B-˙AFEIfF-˙f=B-˙CDhl𝒢GEd
61 1 2 11 39 35 36 31 60 hlcomd φ⟨“ABC”⟩𝒢G⟨“DEF”⟩aPcPdPfPABIaA-˙a=E-˙DCBIcC-˙c=E-˙FDEIdD-˙d=B-˙AFEIfF-˙f=B-˙Cdhl𝒢GED
62 1 2 11 31 32 33 34 39 36 38 56 35 61 cgrahl1 φ⟨“ABC”⟩𝒢G⟨“DEF”⟩aPcPdPfPABIaA-˙a=E-˙DCBIcC-˙c=E-˙FDEIdD-˙d=B-˙AFEIfF-˙f=B-˙C⟨“aBc”⟩𝒢G⟨“dEF”⟩
63 30 simprld φ⟨“ABC”⟩𝒢G⟨“DEF”⟩aPcPdPfPABIaA-˙a=E-˙DCBIcC-˙c=E-˙FDEIdD-˙d=B-˙AFEIfF-˙f=B-˙CFEIf
64 27 ad5antr φ⟨“ABC”⟩𝒢G⟨“DEF”⟩aPcPdPfPABIaA-˙a=E-˙DCBIcC-˙c=E-˙FDEIdD-˙d=B-˙AFEIfF-˙f=B-˙CFE
65 1 3 2 31 36 38 37 63 64 tgbtwnne φ⟨“ABC”⟩𝒢G⟨“DEF”⟩aPcPdPfPABIaA-˙a=E-˙DCBIcC-˙c=E-˙FDEIdD-˙d=B-˙AFEIfF-˙f=B-˙CEf
66 1 2 11 36 37 38 31 41 63 65 64 btwnhl1 φ⟨“ABC”⟩𝒢G⟨“DEF”⟩aPcPdPfPABIaA-˙a=E-˙DCBIcC-˙c=E-˙FDEIdD-˙d=B-˙AFEIfF-˙f=B-˙CFhl𝒢GEf
67 1 2 11 38 37 36 31 66 hlcomd φ⟨“ABC”⟩𝒢G⟨“DEF”⟩aPcPdPfPABIaA-˙a=E-˙DCBIcC-˙c=E-˙FDEIdD-˙d=B-˙AFEIfF-˙f=B-˙Cfhl𝒢GEF
68 1 2 11 31 32 33 34 35 36 38 62 37 67 cgrahl2 φ⟨“ABC”⟩𝒢G⟨“DEF”⟩aPcPdPfPABIaA-˙a=E-˙DCBIcC-˙c=E-˙FDEIdD-˙d=B-˙AFEIfF-˙f=B-˙C⟨“aBc”⟩𝒢G⟨“dEf”⟩
69 46 necomd φ⟨“ABC”⟩𝒢G⟨“DEF”⟩aPcPdPfPABIaA-˙a=E-˙DCBIcC-˙c=E-˙FDEIdD-˙d=B-˙AFEIfF-˙f=B-˙CaB
70 1 2 11 32 41 33 31 69 hlid φ⟨“ABC”⟩𝒢G⟨“DEF”⟩aPcPdPfPABIaA-˙a=E-˙DCBIcC-˙c=E-˙FDEIdD-˙d=B-˙AFEIfF-˙f=B-˙Cahl𝒢GBa
71 52 necomd φ⟨“ABC”⟩𝒢G⟨“DEF”⟩aPcPdPfPABIaA-˙a=E-˙DCBIcC-˙c=E-˙FDEIdD-˙d=B-˙AFEIfF-˙f=B-˙CcB
72 1 2 11 34 41 33 31 71 hlid φ⟨“ABC”⟩𝒢G⟨“DEF”⟩aPcPdPfPABIaA-˙a=E-˙DCBIcC-˙c=E-˙FDEIdD-˙d=B-˙AFEIfF-˙f=B-˙Cchl𝒢GBc
73 1 3 2 31 33 41 32 44 tgbtwncom φ⟨“ABC”⟩𝒢G⟨“DEF”⟩aPcPdPfPABIaA-˙a=E-˙DCBIcC-˙c=E-˙FDEIdD-˙d=B-˙AFEIfF-˙f=B-˙CAaIB
74 29 simplrd φ⟨“ABC”⟩𝒢G⟨“DEF”⟩aPcPdPfPABIaA-˙a=E-˙DCBIcC-˙c=E-˙FDEIdD-˙d=B-˙AFEIfF-˙f=B-˙CA-˙a=E-˙D
75 1 3 2 31 41 32 36 39 74 tgcgrcoml φ⟨“ABC”⟩𝒢G⟨“DEF”⟩aPcPdPfPABIaA-˙a=E-˙DCBIcC-˙c=E-˙FDEIdD-˙d=B-˙AFEIfF-˙f=B-˙Ca-˙A=E-˙D
76 30 simplrd φ⟨“ABC”⟩𝒢G⟨“DEF”⟩aPcPdPfPABIaA-˙a=E-˙DCBIcC-˙c=E-˙FDEIdD-˙d=B-˙AFEIfF-˙f=B-˙CD-˙d=B-˙A
77 76 eqcomd φ⟨“ABC”⟩𝒢G⟨“DEF”⟩aPcPdPfPABIaA-˙a=E-˙DCBIcC-˙c=E-˙FDEIdD-˙d=B-˙AFEIfF-˙f=B-˙CB-˙A=D-˙d
78 1 3 2 31 33 41 39 35 77 tgcgrcoml φ⟨“ABC”⟩𝒢G⟨“DEF”⟩aPcPdPfPABIaA-˙a=E-˙DCBIcC-˙c=E-˙FDEIdD-˙d=B-˙AFEIfF-˙f=B-˙CA-˙B=D-˙d
79 1 3 2 31 32 41 33 36 39 35 73 57 75 78 tgcgrextend φ⟨“ABC”⟩𝒢G⟨“DEF”⟩aPcPdPfPABIaA-˙a=E-˙DCBIcC-˙c=E-˙FDEIdD-˙d=B-˙AFEIfF-˙f=B-˙Ca-˙B=E-˙d
80 1 3 2 31 32 33 36 35 79 tgcgrcoml φ⟨“ABC”⟩𝒢G⟨“DEF”⟩aPcPdPfPABIaA-˙a=E-˙DCBIcC-˙c=E-˙FDEIdD-˙d=B-˙AFEIfF-˙f=B-˙CB-˙a=E-˙d
81 1 3 2 31 33 40 34 50 tgbtwncom φ⟨“ABC”⟩𝒢G⟨“DEF”⟩aPcPdPfPABIaA-˙a=E-˙DCBIcC-˙c=E-˙FDEIdD-˙d=B-˙AFEIfF-˙f=B-˙CCcIB
82 29 simprrd φ⟨“ABC”⟩𝒢G⟨“DEF”⟩aPcPdPfPABIaA-˙a=E-˙DCBIcC-˙c=E-˙FDEIdD-˙d=B-˙AFEIfF-˙f=B-˙CC-˙c=E-˙F
83 1 3 2 31 40 34 36 38 82 tgcgrcoml φ⟨“ABC”⟩𝒢G⟨“DEF”⟩aPcPdPfPABIaA-˙a=E-˙DCBIcC-˙c=E-˙FDEIdD-˙d=B-˙AFEIfF-˙f=B-˙Cc-˙C=E-˙F
84 30 simprrd φ⟨“ABC”⟩𝒢G⟨“DEF”⟩aPcPdPfPABIaA-˙a=E-˙DCBIcC-˙c=E-˙FDEIdD-˙d=B-˙AFEIfF-˙f=B-˙CF-˙f=B-˙C
85 84 eqcomd φ⟨“ABC”⟩𝒢G⟨“DEF”⟩aPcPdPfPABIaA-˙a=E-˙DCBIcC-˙c=E-˙FDEIdD-˙d=B-˙AFEIfF-˙f=B-˙CB-˙C=F-˙f
86 1 3 2 31 33 40 38 37 85 tgcgrcoml φ⟨“ABC”⟩𝒢G⟨“DEF”⟩aPcPdPfPABIaA-˙a=E-˙DCBIcC-˙c=E-˙FDEIdD-˙d=B-˙AFEIfF-˙f=B-˙CC-˙B=F-˙f
87 1 3 2 31 34 40 33 36 38 37 81 63 83 86 tgcgrextend φ⟨“ABC”⟩𝒢G⟨“DEF”⟩aPcPdPfPABIaA-˙a=E-˙DCBIcC-˙c=E-˙FDEIdD-˙d=B-˙AFEIfF-˙f=B-˙Cc-˙B=E-˙f
88 1 3 2 31 34 33 36 37 87 tgcgrcoml φ⟨“ABC”⟩𝒢G⟨“DEF”⟩aPcPdPfPABIaA-˙a=E-˙DCBIcC-˙c=E-˙FDEIdD-˙d=B-˙AFEIfF-˙f=B-˙CB-˙c=E-˙f
89 1 2 11 31 32 33 34 35 36 37 68 32 3 34 70 72 80 88 cgracgr φ⟨“ABC”⟩𝒢G⟨“DEF”⟩aPcPdPfPABIaA-˙a=E-˙DCBIcC-˙c=E-˙FDEIdD-˙d=B-˙AFEIfF-˙f=B-˙Ca-˙c=d-˙f
90 29 30 89 3jca φ⟨“ABC”⟩𝒢G⟨“DEF”⟩aPcPdPfPABIaA-˙a=E-˙DCBIcC-˙c=E-˙FDEIdD-˙d=B-˙AFEIfF-˙f=B-˙CABIaA-˙a=E-˙DCBIcC-˙c=E-˙FDEIdD-˙d=B-˙AFEIfF-˙f=B-˙Ca-˙c=d-˙f
91 90 ex φ⟨“ABC”⟩𝒢G⟨“DEF”⟩aPcPdPfPABIaA-˙a=E-˙DCBIcC-˙c=E-˙FDEIdD-˙d=B-˙AFEIfF-˙f=B-˙CABIaA-˙a=E-˙DCBIcC-˙c=E-˙FDEIdD-˙d=B-˙AFEIfF-˙f=B-˙Ca-˙c=d-˙f
92 91 reximdva φ⟨“ABC”⟩𝒢G⟨“DEF”⟩aPcPdPfPABIaA-˙a=E-˙DCBIcC-˙c=E-˙FDEIdD-˙d=B-˙AFEIfF-˙f=B-˙CfPABIaA-˙a=E-˙DCBIcC-˙c=E-˙FDEIdD-˙d=B-˙AFEIfF-˙f=B-˙Ca-˙c=d-˙f
93 92 reximdva φ⟨“ABC”⟩𝒢G⟨“DEF”⟩aPcPdPfPABIaA-˙a=E-˙DCBIcC-˙c=E-˙FDEIdD-˙d=B-˙AFEIfF-˙f=B-˙CdPfPABIaA-˙a=E-˙DCBIcC-˙c=E-˙FDEIdD-˙d=B-˙AFEIfF-˙f=B-˙Ca-˙c=d-˙f
94 93 imp φ⟨“ABC”⟩𝒢G⟨“DEF”⟩aPcPdPfPABIaA-˙a=E-˙DCBIcC-˙c=E-˙FDEIdD-˙d=B-˙AFEIfF-˙f=B-˙CdPfPABIaA-˙a=E-˙DCBIcC-˙c=E-˙FDEIdD-˙d=B-˙AFEIfF-˙f=B-˙Ca-˙c=d-˙f
95 1 3 2 4 6 5 9 8 axtgsegcon φaPABIaA-˙a=E-˙D
96 1 3 2 4 6 7 9 10 axtgsegcon φcPCBIcC-˙c=E-˙F
97 reeanv aPcPABIaA-˙a=E-˙DCBIcC-˙c=E-˙FaPABIaA-˙a=E-˙DcPCBIcC-˙c=E-˙F
98 95 96 97 sylanbrc φaPcPABIaA-˙a=E-˙DCBIcC-˙c=E-˙F
99 1 3 2 4 9 8 6 5 axtgsegcon φdPDEIdD-˙d=B-˙A
100 1 3 2 4 9 10 6 7 axtgsegcon φfPFEIfF-˙f=B-˙C
101 reeanv dPfPDEIdD-˙d=B-˙AFEIfF-˙f=B-˙CdPDEIdD-˙d=B-˙AfPFEIfF-˙f=B-˙C
102 99 100 101 sylanbrc φdPfPDEIdD-˙d=B-˙AFEIfF-˙f=B-˙C
103 98 102 jca φaPcPABIaA-˙a=E-˙DCBIcC-˙c=E-˙FdPfPDEIdD-˙d=B-˙AFEIfF-˙f=B-˙C
104 r19.41vv dPfPDEIdD-˙d=B-˙AFEIfF-˙f=B-˙CABIaA-˙a=E-˙DCBIcC-˙c=E-˙FdPfPDEIdD-˙d=B-˙AFEIfF-˙f=B-˙CABIaA-˙a=E-˙DCBIcC-˙c=E-˙F
105 ancom DEIdD-˙d=B-˙AFEIfF-˙f=B-˙CABIaA-˙a=E-˙DCBIcC-˙c=E-˙FABIaA-˙a=E-˙DCBIcC-˙c=E-˙FDEIdD-˙d=B-˙AFEIfF-˙f=B-˙C
106 105 2rexbii dPfPDEIdD-˙d=B-˙AFEIfF-˙f=B-˙CABIaA-˙a=E-˙DCBIcC-˙c=E-˙FdPfPABIaA-˙a=E-˙DCBIcC-˙c=E-˙FDEIdD-˙d=B-˙AFEIfF-˙f=B-˙C
107 ancom dPfPDEIdD-˙d=B-˙AFEIfF-˙f=B-˙CABIaA-˙a=E-˙DCBIcC-˙c=E-˙FABIaA-˙a=E-˙DCBIcC-˙c=E-˙FdPfPDEIdD-˙d=B-˙AFEIfF-˙f=B-˙C
108 104 106 107 3bitr3i dPfPABIaA-˙a=E-˙DCBIcC-˙c=E-˙FDEIdD-˙d=B-˙AFEIfF-˙f=B-˙CABIaA-˙a=E-˙DCBIcC-˙c=E-˙FdPfPDEIdD-˙d=B-˙AFEIfF-˙f=B-˙C
109 108 2rexbii aPcPdPfPABIaA-˙a=E-˙DCBIcC-˙c=E-˙FDEIdD-˙d=B-˙AFEIfF-˙f=B-˙CaPcPABIaA-˙a=E-˙DCBIcC-˙c=E-˙FdPfPDEIdD-˙d=B-˙AFEIfF-˙f=B-˙C
110 r19.41vv aPcPABIaA-˙a=E-˙DCBIcC-˙c=E-˙FdPfPDEIdD-˙d=B-˙AFEIfF-˙f=B-˙CaPcPABIaA-˙a=E-˙DCBIcC-˙c=E-˙FdPfPDEIdD-˙d=B-˙AFEIfF-˙f=B-˙C
111 109 110 bitr2i aPcPABIaA-˙a=E-˙DCBIcC-˙c=E-˙FdPfPDEIdD-˙d=B-˙AFEIfF-˙f=B-˙CaPcPdPfPABIaA-˙a=E-˙DCBIcC-˙c=E-˙FDEIdD-˙d=B-˙AFEIfF-˙f=B-˙C
112 103 111 sylib φaPcPdPfPABIaA-˙a=E-˙DCBIcC-˙c=E-˙FDEIdD-˙d=B-˙AFEIfF-˙f=B-˙C
113 112 adantr φ⟨“ABC”⟩𝒢G⟨“DEF”⟩aPcPdPfPABIaA-˙a=E-˙DCBIcC-˙c=E-˙FDEIdD-˙d=B-˙AFEIfF-˙f=B-˙C
114 94 113 reximddv2 φ⟨“ABC”⟩𝒢G⟨“DEF”⟩aPcPdPfPABIaA-˙a=E-˙DCBIcC-˙c=E-˙FDEIdD-˙d=B-˙AFEIfF-˙f=B-˙Ca-˙c=d-˙f
115 23 28 114 3jca φ⟨“ABC”⟩𝒢G⟨“DEF”⟩ABCBDEFEaPcPdPfPABIaA-˙a=E-˙DCBIcC-˙c=E-˙FDEIdD-˙d=B-˙AFEIfF-˙f=B-˙Ca-˙c=d-˙f
116 df-3an ABCBDEFEaPcPdPfPABIaA-˙a=E-˙DCBIcC-˙c=E-˙FDEIdD-˙d=B-˙AFEIfF-˙f=B-˙Ca-˙c=d-˙fABCBDEFEaPcPdPfPABIaA-˙a=E-˙DCBIcC-˙c=E-˙FDEIdD-˙d=B-˙AFEIfF-˙f=B-˙Ca-˙c=d-˙f
117 4 ad6antr φABCBDEFExPyPzPtPABIxA-˙x=E-˙DCBIyC-˙y=E-˙FDEIzD-˙z=B-˙AFEItF-˙t=B-˙Cx-˙y=z-˙tG𝒢Tarski
118 8 ad6antr φABCBDEFExPyPzPtPABIxA-˙x=E-˙DCBIyC-˙y=E-˙FDEIzD-˙z=B-˙AFEItF-˙t=B-˙Cx-˙y=z-˙tDP
119 9 ad6antr φABCBDEFExPyPzPtPABIxA-˙x=E-˙DCBIyC-˙y=E-˙FDEIzD-˙z=B-˙AFEItF-˙t=B-˙Cx-˙y=z-˙tEP
120 10 ad6antr φABCBDEFExPyPzPtPABIxA-˙x=E-˙DCBIyC-˙y=E-˙FDEIzD-˙z=B-˙AFEItF-˙t=B-˙Cx-˙y=z-˙tFP
121 5 ad6antr φABCBDEFExPyPzPtPABIxA-˙x=E-˙DCBIyC-˙y=E-˙FDEIzD-˙z=B-˙AFEItF-˙t=B-˙Cx-˙y=z-˙tAP
122 6 ad6antr φABCBDEFExPyPzPtPABIxA-˙x=E-˙DCBIyC-˙y=E-˙FDEIzD-˙z=B-˙AFEItF-˙t=B-˙Cx-˙y=z-˙tBP
123 7 ad6antr φABCBDEFExPyPzPtPABIxA-˙x=E-˙DCBIyC-˙y=E-˙FDEIzD-˙z=B-˙AFEItF-˙t=B-˙Cx-˙y=z-˙tCP
124 simp-4r φABCBDEFExPyPzPtPABIxA-˙x=E-˙DCBIyC-˙y=E-˙FDEIzD-˙z=B-˙AFEItF-˙t=B-˙Cx-˙y=z-˙tyP
125 simp-5r φABCBDEFExPyPzPtPABIxA-˙x=E-˙DCBIyC-˙y=E-˙FDEIzD-˙z=B-˙AFEItF-˙t=B-˙Cx-˙y=z-˙txP
126 simpllr φABCBDEFExPyPzPtPABIxA-˙x=E-˙DCBIyC-˙y=E-˙FDEIzD-˙z=B-˙AFEItF-˙t=B-˙Cx-˙y=z-˙tzP
127 simplr φABCBDEFExPyPzPtPABIxA-˙x=E-˙DCBIyC-˙y=E-˙FDEIzD-˙z=B-˙AFEItF-˙t=B-˙Cx-˙y=z-˙ttP
128 eqid 𝒢G=𝒢G
129 simpr1 φABCBDEFExPyPzPtPABIxA-˙x=E-˙DCBIyC-˙y=E-˙FDEIzD-˙z=B-˙AFEItF-˙t=B-˙Cx-˙y=z-˙tABIxA-˙x=E-˙DCBIyC-˙y=E-˙F
130 129 simplld φABCBDEFExPyPzPtPABIxA-˙x=E-˙DCBIyC-˙y=E-˙FDEIzD-˙z=B-˙AFEItF-˙t=B-˙Cx-˙y=z-˙tABIx
131 simpr2 φABCBDEFExPyPzPtPABIxA-˙x=E-˙DCBIyC-˙y=E-˙FDEIzD-˙z=B-˙AFEItF-˙t=B-˙Cx-˙y=z-˙tDEIzD-˙z=B-˙AFEItF-˙t=B-˙C
132 131 simplld φABCBDEFExPyPzPtPABIxA-˙x=E-˙DCBIyC-˙y=E-˙FDEIzD-˙z=B-˙AFEItF-˙t=B-˙Cx-˙y=z-˙tDEIz
133 1 3 2 117 119 118 126 132 tgbtwncom φABCBDEFExPyPzPtPABIxA-˙x=E-˙DCBIyC-˙y=E-˙FDEIzD-˙z=B-˙AFEItF-˙t=B-˙Cx-˙y=z-˙tDzIE
134 131 simplrd φABCBDEFExPyPzPtPABIxA-˙x=E-˙DCBIyC-˙y=E-˙FDEIzD-˙z=B-˙AFEItF-˙t=B-˙Cx-˙y=z-˙tD-˙z=B-˙A
135 134 eqcomd φABCBDEFExPyPzPtPABIxA-˙x=E-˙DCBIyC-˙y=E-˙FDEIzD-˙z=B-˙AFEItF-˙t=B-˙Cx-˙y=z-˙tB-˙A=D-˙z
136 1 3 2 117 122 121 118 126 135 tgcgrcomr φABCBDEFExPyPzPtPABIxA-˙x=E-˙DCBIyC-˙y=E-˙FDEIzD-˙z=B-˙AFEItF-˙t=B-˙Cx-˙y=z-˙tB-˙A=z-˙D
137 129 simplrd φABCBDEFExPyPzPtPABIxA-˙x=E-˙DCBIyC-˙y=E-˙FDEIzD-˙z=B-˙AFEItF-˙t=B-˙Cx-˙y=z-˙tA-˙x=E-˙D
138 1 3 2 117 121 125 119 118 137 tgcgrcomr φABCBDEFExPyPzPtPABIxA-˙x=E-˙DCBIyC-˙y=E-˙FDEIzD-˙z=B-˙AFEItF-˙t=B-˙Cx-˙y=z-˙tA-˙x=D-˙E
139 1 3 2 117 122 121 125 126 118 119 130 133 136 138 tgcgrextend φABCBDEFExPyPzPtPABIxA-˙x=E-˙DCBIyC-˙y=E-˙FDEIzD-˙z=B-˙AFEItF-˙t=B-˙Cx-˙y=z-˙tB-˙x=z-˙E
140 1 3 2 117 122 125 126 119 139 tgcgrcoml φABCBDEFExPyPzPtPABIxA-˙x=E-˙DCBIyC-˙y=E-˙FDEIzD-˙z=B-˙AFEItF-˙t=B-˙Cx-˙y=z-˙tx-˙B=z-˙E
141 129 simprld φABCBDEFExPyPzPtPABIxA-˙x=E-˙DCBIyC-˙y=E-˙FDEIzD-˙z=B-˙AFEItF-˙t=B-˙Cx-˙y=z-˙tCBIy
142 1 3 2 117 122 123 124 141 tgbtwncom φABCBDEFExPyPzPtPABIxA-˙x=E-˙DCBIyC-˙y=E-˙FDEIzD-˙z=B-˙AFEItF-˙t=B-˙Cx-˙y=z-˙tCyIB
143 131 simprld φABCBDEFExPyPzPtPABIxA-˙x=E-˙DCBIyC-˙y=E-˙FDEIzD-˙z=B-˙AFEItF-˙t=B-˙Cx-˙y=z-˙tFEIt
144 129 simprrd φABCBDEFExPyPzPtPABIxA-˙x=E-˙DCBIyC-˙y=E-˙FDEIzD-˙z=B-˙AFEItF-˙t=B-˙Cx-˙y=z-˙tC-˙y=E-˙F
145 1 3 2 117 123 124 119 120 144 tgcgrcoml φABCBDEFExPyPzPtPABIxA-˙x=E-˙DCBIyC-˙y=E-˙FDEIzD-˙z=B-˙AFEItF-˙t=B-˙Cx-˙y=z-˙ty-˙C=E-˙F
146 131 simprrd φABCBDEFExPyPzPtPABIxA-˙x=E-˙DCBIyC-˙y=E-˙FDEIzD-˙z=B-˙AFEItF-˙t=B-˙Cx-˙y=z-˙tF-˙t=B-˙C
147 146 eqcomd φABCBDEFExPyPzPtPABIxA-˙x=E-˙DCBIyC-˙y=E-˙FDEIzD-˙z=B-˙AFEItF-˙t=B-˙Cx-˙y=z-˙tB-˙C=F-˙t
148 1 3 2 117 122 123 120 127 147 tgcgrcoml φABCBDEFExPyPzPtPABIxA-˙x=E-˙DCBIyC-˙y=E-˙FDEIzD-˙z=B-˙AFEItF-˙t=B-˙Cx-˙y=z-˙tC-˙B=F-˙t
149 1 3 2 117 124 123 122 119 120 127 142 143 145 148 tgcgrextend φABCBDEFExPyPzPtPABIxA-˙x=E-˙DCBIyC-˙y=E-˙FDEIzD-˙z=B-˙AFEItF-˙t=B-˙Cx-˙y=z-˙ty-˙B=E-˙t
150 1 3 2 117 124 122 119 127 149 tgcgrcoml φABCBDEFExPyPzPtPABIxA-˙x=E-˙DCBIyC-˙y=E-˙FDEIzD-˙z=B-˙AFEItF-˙t=B-˙Cx-˙y=z-˙tB-˙y=E-˙t
151 simpr3 φABCBDEFExPyPzPtPABIxA-˙x=E-˙DCBIyC-˙y=E-˙FDEIzD-˙z=B-˙AFEItF-˙t=B-˙Cx-˙y=z-˙tx-˙y=z-˙t
152 1 3 2 117 125 124 126 127 151 tgcgrcomlr φABCBDEFExPyPzPtPABIxA-˙x=E-˙DCBIyC-˙y=E-˙FDEIzD-˙z=B-˙AFEItF-˙t=B-˙Cx-˙y=z-˙ty-˙x=t-˙z
153 1 3 128 117 125 122 124 126 119 127 140 150 152 trgcgr φABCBDEFExPyPzPtPABIxA-˙x=E-˙DCBIyC-˙y=E-˙FDEIzD-˙z=B-˙AFEItF-˙t=B-˙Cx-˙y=z-˙t⟨“xBy”⟩𝒢G⟨“zEt”⟩
154 simp-6r φABCBDEFExPyPzPtPABIxA-˙x=E-˙DCBIyC-˙y=E-˙FDEIzD-˙z=B-˙AFEItF-˙t=B-˙Cx-˙y=z-˙tABCBDEFE
155 154 simprld φABCBDEFExPyPzPtPABIxA-˙x=E-˙DCBIyC-˙y=E-˙FDEIzD-˙z=B-˙AFEItF-˙t=B-˙Cx-˙y=z-˙tDE
156 1 3 2 117 119 118 126 132 155 tgbtwnne φABCBDEFExPyPzPtPABIxA-˙x=E-˙DCBIyC-˙y=E-˙FDEIzD-˙z=B-˙AFEItF-˙t=B-˙Cx-˙y=z-˙tEz
157 1 2 11 119 126 118 117 122 132 156 155 btwnhl1 φABCBDEFExPyPzPtPABIxA-˙x=E-˙DCBIyC-˙y=E-˙FDEIzD-˙z=B-˙AFEItF-˙t=B-˙Cx-˙y=z-˙tDhl𝒢GEz
158 1 2 11 118 126 119 117 157 hlcomd φABCBDEFExPyPzPtPABIxA-˙x=E-˙DCBIyC-˙y=E-˙FDEIzD-˙z=B-˙AFEItF-˙t=B-˙Cx-˙y=z-˙tzhl𝒢GED
159 154 simprrd φABCBDEFExPyPzPtPABIxA-˙x=E-˙DCBIyC-˙y=E-˙FDEIzD-˙z=B-˙AFEItF-˙t=B-˙Cx-˙y=z-˙tFE
160 1 3 2 117 119 120 127 143 159 tgbtwnne φABCBDEFExPyPzPtPABIxA-˙x=E-˙DCBIyC-˙y=E-˙FDEIzD-˙z=B-˙AFEItF-˙t=B-˙Cx-˙y=z-˙tEt
161 1 2 11 119 127 120 117 122 143 160 159 btwnhl1 φABCBDEFExPyPzPtPABIxA-˙x=E-˙DCBIyC-˙y=E-˙FDEIzD-˙z=B-˙AFEItF-˙t=B-˙Cx-˙y=z-˙tFhl𝒢GEt
162 1 2 11 120 127 119 117 161 hlcomd φABCBDEFExPyPzPtPABIxA-˙x=E-˙DCBIyC-˙y=E-˙FDEIzD-˙z=B-˙AFEItF-˙t=B-˙Cx-˙y=z-˙tthl𝒢GEF
163 1 2 11 117 125 122 124 118 119 120 126 127 153 158 162 iscgrad φABCBDEFExPyPzPtPABIxA-˙x=E-˙DCBIyC-˙y=E-˙FDEIzD-˙z=B-˙AFEItF-˙t=B-˙Cx-˙y=z-˙t⟨“xBy”⟩𝒢G⟨“DEF”⟩
164 1 2 117 11 125 122 124 118 119 120 163 cgracom φABCBDEFExPyPzPtPABIxA-˙x=E-˙DCBIyC-˙y=E-˙FDEIzD-˙z=B-˙AFEItF-˙t=B-˙Cx-˙y=z-˙t⟨“DEF”⟩𝒢G⟨“xBy”⟩
165 154 simplld φABCBDEFExPyPzPtPABIxA-˙x=E-˙DCBIyC-˙y=E-˙FDEIzD-˙z=B-˙AFEItF-˙t=B-˙Cx-˙y=z-˙tAB
166 1 3 2 117 122 121 125 130 165 tgbtwnne φABCBDEFExPyPzPtPABIxA-˙x=E-˙DCBIyC-˙y=E-˙FDEIzD-˙z=B-˙AFEItF-˙t=B-˙Cx-˙y=z-˙tBx
167 1 2 11 122 125 121 117 121 130 166 165 btwnhl1 φABCBDEFExPyPzPtPABIxA-˙x=E-˙DCBIyC-˙y=E-˙FDEIzD-˙z=B-˙AFEItF-˙t=B-˙Cx-˙y=z-˙tAhl𝒢GBx
168 1 2 11 117 118 119 120 125 122 124 164 121 167 cgrahl1 φABCBDEFExPyPzPtPABIxA-˙x=E-˙DCBIyC-˙y=E-˙FDEIzD-˙z=B-˙AFEItF-˙t=B-˙Cx-˙y=z-˙t⟨“DEF”⟩𝒢G⟨“ABy”⟩
169 154 simplrd φABCBDEFExPyPzPtPABIxA-˙x=E-˙DCBIyC-˙y=E-˙FDEIzD-˙z=B-˙AFEItF-˙t=B-˙Cx-˙y=z-˙tCB
170 1 3 2 117 122 123 124 141 169 tgbtwnne φABCBDEFExPyPzPtPABIxA-˙x=E-˙DCBIyC-˙y=E-˙FDEIzD-˙z=B-˙AFEItF-˙t=B-˙Cx-˙y=z-˙tBy
171 1 2 11 122 124 123 117 121 141 170 169 btwnhl1 φABCBDEFExPyPzPtPABIxA-˙x=E-˙DCBIyC-˙y=E-˙FDEIzD-˙z=B-˙AFEItF-˙t=B-˙Cx-˙y=z-˙tChl𝒢GBy
172 1 2 11 117 118 119 120 121 122 124 168 123 171 cgrahl2 φABCBDEFExPyPzPtPABIxA-˙x=E-˙DCBIyC-˙y=E-˙FDEIzD-˙z=B-˙AFEItF-˙t=B-˙Cx-˙y=z-˙t⟨“DEF”⟩𝒢G⟨“ABC”⟩
173 1 2 117 11 118 119 120 121 122 123 172 cgracom φABCBDEFExPyPzPtPABIxA-˙x=E-˙DCBIyC-˙y=E-˙FDEIzD-˙z=B-˙AFEItF-˙t=B-˙Cx-˙y=z-˙t⟨“ABC”⟩𝒢G⟨“DEF”⟩
174 173 adantl3r φABCBDEFExPyPdPfPABIxA-˙x=E-˙DCBIyC-˙y=E-˙FDEIdD-˙d=B-˙AFEIfF-˙f=B-˙Cx-˙y=d-˙fzPtPABIxA-˙x=E-˙DCBIyC-˙y=E-˙FDEIzD-˙z=B-˙AFEItF-˙t=B-˙Cx-˙y=z-˙t⟨“ABC”⟩𝒢G⟨“DEF”⟩
175 simpr φABCBDEFExPyPdPfPABIxA-˙x=E-˙DCBIyC-˙y=E-˙FDEIdD-˙d=B-˙AFEIfF-˙f=B-˙Cx-˙y=d-˙fdPfPABIxA-˙x=E-˙DCBIyC-˙y=E-˙FDEIdD-˙d=B-˙AFEIfF-˙f=B-˙Cx-˙y=d-˙f
176 oveq2 d=zEId=EIz
177 176 eleq2d d=zDEIdDEIz
178 oveq2 d=zD-˙d=D-˙z
179 178 eqeq1d d=zD-˙d=B-˙AD-˙z=B-˙A
180 177 179 anbi12d d=zDEIdD-˙d=B-˙ADEIzD-˙z=B-˙A
181 180 anbi1d d=zDEIdD-˙d=B-˙AFEIfF-˙f=B-˙CDEIzD-˙z=B-˙AFEIfF-˙f=B-˙C
182 oveq1 d=zd-˙f=z-˙f
183 182 eqeq2d d=zx-˙y=d-˙fx-˙y=z-˙f
184 181 183 3anbi23d d=zABIxA-˙x=E-˙DCBIyC-˙y=E-˙FDEIdD-˙d=B-˙AFEIfF-˙f=B-˙Cx-˙y=d-˙fABIxA-˙x=E-˙DCBIyC-˙y=E-˙FDEIzD-˙z=B-˙AFEIfF-˙f=B-˙Cx-˙y=z-˙f
185 oveq2 f=tEIf=EIt
186 185 eleq2d f=tFEIfFEIt
187 oveq2 f=tF-˙f=F-˙t
188 187 eqeq1d f=tF-˙f=B-˙CF-˙t=B-˙C
189 186 188 anbi12d f=tFEIfF-˙f=B-˙CFEItF-˙t=B-˙C
190 189 anbi2d f=tDEIzD-˙z=B-˙AFEIfF-˙f=B-˙CDEIzD-˙z=B-˙AFEItF-˙t=B-˙C
191 oveq2 f=tz-˙f=z-˙t
192 191 eqeq2d f=tx-˙y=z-˙fx-˙y=z-˙t
193 190 192 3anbi23d f=tABIxA-˙x=E-˙DCBIyC-˙y=E-˙FDEIzD-˙z=B-˙AFEIfF-˙f=B-˙Cx-˙y=z-˙fABIxA-˙x=E-˙DCBIyC-˙y=E-˙FDEIzD-˙z=B-˙AFEItF-˙t=B-˙Cx-˙y=z-˙t
194 184 193 cbvrex2vw dPfPABIxA-˙x=E-˙DCBIyC-˙y=E-˙FDEIdD-˙d=B-˙AFEIfF-˙f=B-˙Cx-˙y=d-˙fzPtPABIxA-˙x=E-˙DCBIyC-˙y=E-˙FDEIzD-˙z=B-˙AFEItF-˙t=B-˙Cx-˙y=z-˙t
195 175 194 sylib φABCBDEFExPyPdPfPABIxA-˙x=E-˙DCBIyC-˙y=E-˙FDEIdD-˙d=B-˙AFEIfF-˙f=B-˙Cx-˙y=d-˙fzPtPABIxA-˙x=E-˙DCBIyC-˙y=E-˙FDEIzD-˙z=B-˙AFEItF-˙t=B-˙Cx-˙y=z-˙t
196 174 195 r19.29vva φABCBDEFExPyPdPfPABIxA-˙x=E-˙DCBIyC-˙y=E-˙FDEIdD-˙d=B-˙AFEIfF-˙f=B-˙Cx-˙y=d-˙f⟨“ABC”⟩𝒢G⟨“DEF”⟩
197 196 adantl3r φABCBDEFEaPcPdPfPABIaA-˙a=E-˙DCBIcC-˙c=E-˙FDEIdD-˙d=B-˙AFEIfF-˙f=B-˙Ca-˙c=d-˙fxPyPdPfPABIxA-˙x=E-˙DCBIyC-˙y=E-˙FDEIdD-˙d=B-˙AFEIfF-˙f=B-˙Cx-˙y=d-˙f⟨“ABC”⟩𝒢G⟨“DEF”⟩
198 simpr φABCBDEFEaPcPdPfPABIaA-˙a=E-˙DCBIcC-˙c=E-˙FDEIdD-˙d=B-˙AFEIfF-˙f=B-˙Ca-˙c=d-˙faPcPdPfPABIaA-˙a=E-˙DCBIcC-˙c=E-˙FDEIdD-˙d=B-˙AFEIfF-˙f=B-˙Ca-˙c=d-˙f
199 oveq2 a=xBIa=BIx
200 199 eleq2d a=xABIaABIx
201 oveq2 a=xA-˙a=A-˙x
202 201 eqeq1d a=xA-˙a=E-˙DA-˙x=E-˙D
203 200 202 anbi12d a=xABIaA-˙a=E-˙DABIxA-˙x=E-˙D
204 203 anbi1d a=xABIaA-˙a=E-˙DCBIcC-˙c=E-˙FABIxA-˙x=E-˙DCBIcC-˙c=E-˙F
205 oveq1 a=xa-˙c=x-˙c
206 205 eqeq1d a=xa-˙c=d-˙fx-˙c=d-˙f
207 204 206 3anbi13d a=xABIaA-˙a=E-˙DCBIcC-˙c=E-˙FDEIdD-˙d=B-˙AFEIfF-˙f=B-˙Ca-˙c=d-˙fABIxA-˙x=E-˙DCBIcC-˙c=E-˙FDEIdD-˙d=B-˙AFEIfF-˙f=B-˙Cx-˙c=d-˙f
208 207 2rexbidv a=xdPfPABIaA-˙a=E-˙DCBIcC-˙c=E-˙FDEIdD-˙d=B-˙AFEIfF-˙f=B-˙Ca-˙c=d-˙fdPfPABIxA-˙x=E-˙DCBIcC-˙c=E-˙FDEIdD-˙d=B-˙AFEIfF-˙f=B-˙Cx-˙c=d-˙f
209 oveq2 c=yBIc=BIy
210 209 eleq2d c=yCBIcCBIy
211 oveq2 c=yC-˙c=C-˙y
212 211 eqeq1d c=yC-˙c=E-˙FC-˙y=E-˙F
213 210 212 anbi12d c=yCBIcC-˙c=E-˙FCBIyC-˙y=E-˙F
214 213 anbi2d c=yABIxA-˙x=E-˙DCBIcC-˙c=E-˙FABIxA-˙x=E-˙DCBIyC-˙y=E-˙F
215 oveq2 c=yx-˙c=x-˙y
216 215 eqeq1d c=yx-˙c=d-˙fx-˙y=d-˙f
217 214 216 3anbi13d c=yABIxA-˙x=E-˙DCBIcC-˙c=E-˙FDEIdD-˙d=B-˙AFEIfF-˙f=B-˙Cx-˙c=d-˙fABIxA-˙x=E-˙DCBIyC-˙y=E-˙FDEIdD-˙d=B-˙AFEIfF-˙f=B-˙Cx-˙y=d-˙f
218 217 2rexbidv c=ydPfPABIxA-˙x=E-˙DCBIcC-˙c=E-˙FDEIdD-˙d=B-˙AFEIfF-˙f=B-˙Cx-˙c=d-˙fdPfPABIxA-˙x=E-˙DCBIyC-˙y=E-˙FDEIdD-˙d=B-˙AFEIfF-˙f=B-˙Cx-˙y=d-˙f
219 208 218 cbvrex2vw aPcPdPfPABIaA-˙a=E-˙DCBIcC-˙c=E-˙FDEIdD-˙d=B-˙AFEIfF-˙f=B-˙Ca-˙c=d-˙fxPyPdPfPABIxA-˙x=E-˙DCBIyC-˙y=E-˙FDEIdD-˙d=B-˙AFEIfF-˙f=B-˙Cx-˙y=d-˙f
220 198 219 sylib φABCBDEFEaPcPdPfPABIaA-˙a=E-˙DCBIcC-˙c=E-˙FDEIdD-˙d=B-˙AFEIfF-˙f=B-˙Ca-˙c=d-˙fxPyPdPfPABIxA-˙x=E-˙DCBIyC-˙y=E-˙FDEIdD-˙d=B-˙AFEIfF-˙f=B-˙Cx-˙y=d-˙f
221 197 220 r19.29vva φABCBDEFEaPcPdPfPABIaA-˙a=E-˙DCBIcC-˙c=E-˙FDEIdD-˙d=B-˙AFEIfF-˙f=B-˙Ca-˙c=d-˙f⟨“ABC”⟩𝒢G⟨“DEF”⟩
222 221 anasss φABCBDEFEaPcPdPfPABIaA-˙a=E-˙DCBIcC-˙c=E-˙FDEIdD-˙d=B-˙AFEIfF-˙f=B-˙Ca-˙c=d-˙f⟨“ABC”⟩𝒢G⟨“DEF”⟩
223 116 222 sylan2b φABCBDEFEaPcPdPfPABIaA-˙a=E-˙DCBIcC-˙c=E-˙FDEIdD-˙d=B-˙AFEIfF-˙f=B-˙Ca-˙c=d-˙f⟨“ABC”⟩𝒢G⟨“DEF”⟩
224 115 223 impbida φ⟨“ABC”⟩𝒢G⟨“DEF”⟩ABCBDEFEaPcPdPfPABIaA-˙a=E-˙DCBIcC-˙c=E-˙FDEIdD-˙d=B-˙AFEIfF-˙f=B-˙Ca-˙c=d-˙f