Metamath Proof Explorer


Theorem dia2dimlem2

Description: Lemma for dia2dim . Define a translation G whose trace is atom U . Part of proof of Lemma M in Crawley p. 121 line 4. (Contributed by NM, 8-Sep-2014)

Ref Expression
Hypotheses dia2dimlem2.l ˙=K
dia2dimlem2.j ˙=joinK
dia2dimlem2.m ˙=meetK
dia2dimlem2.a A=AtomsK
dia2dimlem2.h H=LHypK
dia2dimlem2.t T=LTrnKW
dia2dimlem2.r R=trLKW
dia2dimlem2.q Q=P˙U˙FP˙V
dia2dimlem2.k φKHLWH
dia2dimlem2.u φUAU˙W
dia2dimlem2.v φVAV˙W
dia2dimlem2.p φPA¬P˙W
dia2dimlem2.f φFTFPP
dia2dimlem2.rf φRF˙U˙V
dia2dimlem2.rv φRFV
dia2dimlem2.g φGT
dia2dimlem2.gv φGP=Q
Assertion dia2dimlem2 φRG=U

Proof

Step Hyp Ref Expression
1 dia2dimlem2.l ˙=K
2 dia2dimlem2.j ˙=joinK
3 dia2dimlem2.m ˙=meetK
4 dia2dimlem2.a A=AtomsK
5 dia2dimlem2.h H=LHypK
6 dia2dimlem2.t T=LTrnKW
7 dia2dimlem2.r R=trLKW
8 dia2dimlem2.q Q=P˙U˙FP˙V
9 dia2dimlem2.k φKHLWH
10 dia2dimlem2.u φUAU˙W
11 dia2dimlem2.v φVAV˙W
12 dia2dimlem2.p φPA¬P˙W
13 dia2dimlem2.f φFTFPP
14 dia2dimlem2.rf φRF˙U˙V
15 dia2dimlem2.rv φRFV
16 dia2dimlem2.g φGT
17 dia2dimlem2.gv φGP=Q
18 9 simpld φKHL
19 18 hllatd φKLat
20 12 simpld φPA
21 eqid BaseK=BaseK
22 21 4 atbase PAPBaseK
23 20 22 syl φPBaseK
24 10 simpld φUA
25 21 4 atbase UAUBaseK
26 24 25 syl φUBaseK
27 21 1 2 latlej2 KLatPBaseKUBaseKU˙P˙U
28 19 23 26 27 syl3anc φU˙P˙U
29 21 2 4 hlatjcl KHLPAUAP˙UBaseK
30 18 20 24 29 syl3anc φP˙UBaseK
31 21 1 3 latleeqm2 KLatUBaseKP˙UBaseKU˙P˙UP˙U˙U=U
32 19 26 30 31 syl3anc φU˙P˙UP˙U˙U=U
33 28 32 mpbid φP˙U˙U=U
34 1 4 5 6 7 trlat KHLWHPA¬P˙WFTFPPRFA
35 9 12 13 34 syl3anc φRFA
36 11 simpld φVA
37 1 2 4 hlatexch2 KHLRFAUAVARFVRF˙U˙VU˙RF˙V
38 18 35 24 36 15 37 syl131anc φRF˙U˙VU˙RF˙V
39 14 38 mpd φU˙RF˙V
40 13 simpld φFT
41 1 2 3 4 5 6 7 trlval2 KHLWHFTPA¬P˙WRF=P˙FP˙W
42 9 40 12 41 syl3anc φRF=P˙FP˙W
43 42 oveq1d φRF˙V=P˙FP˙W˙V
44 1 4 5 6 ltrnel KHLWHFTPA¬P˙WFPA¬FP˙W
45 9 40 12 44 syl3anc φFPA¬FP˙W
46 45 simpld φFPA
47 21 2 4 hlatjcl KHLPAFPAP˙FPBaseK
48 18 20 46 47 syl3anc φP˙FPBaseK
49 9 simprd φWH
50 21 5 lhpbase WHWBaseK
51 49 50 syl φWBaseK
52 11 simprd φV˙W
53 21 1 2 3 4 atmod4i1 KHLVAP˙FPBaseKWBaseKV˙WP˙FP˙W˙V=P˙FP˙V˙W
54 18 36 48 51 52 53 syl131anc φP˙FP˙W˙V=P˙FP˙V˙W
55 2 4 hlatjass KHLPAFPAVAP˙FP˙V=P˙FP˙V
56 18 20 46 36 55 syl13anc φP˙FP˙V=P˙FP˙V
57 56 oveq1d φP˙FP˙V˙W=P˙FP˙V˙W
58 54 57 eqtrd φP˙FP˙W˙V=P˙FP˙V˙W
59 43 58 eqtrd φRF˙V=P˙FP˙V˙W
60 39 59 breqtrd φU˙P˙FP˙V˙W
61 21 2 4 hlatjcl KHLFPAVAFP˙VBaseK
62 18 46 36 61 syl3anc φFP˙VBaseK
63 21 2 latjcl KLatPBaseKFP˙VBaseKP˙FP˙VBaseK
64 19 23 62 63 syl3anc φP˙FP˙VBaseK
65 21 3 latmcl KLatP˙FP˙VBaseKWBaseKP˙FP˙V˙WBaseK
66 19 64 51 65 syl3anc φP˙FP˙V˙WBaseK
67 21 1 3 latmlem2 KLatUBaseKP˙FP˙V˙WBaseKP˙UBaseKU˙P˙FP˙V˙WP˙U˙U˙P˙U˙P˙FP˙V˙W
68 19 26 66 30 67 syl13anc φU˙P˙FP˙V˙WP˙U˙U˙P˙U˙P˙FP˙V˙W
69 60 68 mpd φP˙U˙U˙P˙U˙P˙FP˙V˙W
70 33 69 eqbrtrrd φU˙P˙U˙P˙FP˙V˙W
71 1 2 3 4 5 6 7 trlval2 KHLWHGTPA¬P˙WRG=P˙GP˙W
72 9 16 12 71 syl3anc φRG=P˙GP˙W
73 17 8 eqtrdi φGP=P˙U˙FP˙V
74 73 oveq2d φP˙GP=P˙P˙U˙FP˙V
75 74 oveq1d φP˙GP˙W=P˙P˙U˙FP˙V˙W
76 1 2 4 hlatlej1 KHLPAUAP˙P˙U
77 18 20 24 76 syl3anc φP˙P˙U
78 21 1 2 3 4 atmod3i1 KHLPAP˙UBaseKFP˙VBaseKP˙P˙UP˙P˙U˙FP˙V=P˙U˙P˙FP˙V
79 18 20 30 62 77 78 syl131anc φP˙P˙U˙FP˙V=P˙U˙P˙FP˙V
80 79 oveq1d φP˙P˙U˙FP˙V˙W=P˙U˙P˙FP˙V˙W
81 hlol KHLKOL
82 18 81 syl φKOL
83 21 3 latmassOLD KOLP˙UBaseKP˙FP˙VBaseKWBaseKP˙U˙P˙FP˙V˙W=P˙U˙P˙FP˙V˙W
84 82 30 64 51 83 syl13anc φP˙U˙P˙FP˙V˙W=P˙U˙P˙FP˙V˙W
85 80 84 eqtrd φP˙P˙U˙FP˙V˙W=P˙U˙P˙FP˙V˙W
86 75 85 eqtrd φP˙GP˙W=P˙U˙P˙FP˙V˙W
87 72 86 eqtrd φRG=P˙U˙P˙FP˙V˙W
88 87 eqcomd φP˙U˙P˙FP˙V˙W=RG
89 70 88 breqtrd φU˙RG
90 hlatl KHLKAtLat
91 18 90 syl φKAtLat
92 hlop KHLKOP
93 18 92 syl φKOP
94 eqid 0.K=0.K
95 eqid <K=<K
96 94 95 4 0ltat KOPUA0.K<KU
97 93 24 96 syl2anc φ0.K<KU
98 hlpos KHLKPoset
99 18 98 syl φKPoset
100 21 94 op0cl KOP0.KBaseK
101 93 100 syl φ0.KBaseK
102 21 5 6 7 trlcl KHLWHGTRGBaseK
103 9 16 102 syl2anc φRGBaseK
104 21 1 95 pltletr KPoset0.KBaseKUBaseKRGBaseK0.K<KUU˙RG0.K<KRG
105 99 101 26 103 104 syl13anc φ0.K<KUU˙RG0.K<KRG
106 97 89 105 mp2and φ0.K<KRG
107 21 95 94 opltn0 KOPRGBaseK0.K<KRGRG0.K
108 93 103 107 syl2anc φ0.K<KRGRG0.K
109 106 108 mpbid φRG0.K
110 109 neneqd φ¬RG=0.K
111 94 4 5 6 7 trlator0 KHLWHGTRGARG=0.K
112 9 16 111 syl2anc φRGARG=0.K
113 112 orcomd φRG=0.KRGA
114 113 ord φ¬RG=0.KRGA
115 110 114 mpd φRGA
116 1 4 atcmp KAtLatUARGAU˙RGU=RG
117 91 24 115 116 syl3anc φU˙RGU=RG
118 89 117 mpbid φU=RG
119 118 eqcomd φRG=U