Metamath Proof Explorer


Theorem dihlsscpre

Description: Closure of isomorphism H for a lattice K when -. X .<_ W . (Contributed by NM, 6-Mar-2014)

Ref Expression
Hypotheses dihval.b B=BaseK
dihval.l ˙=K
dihval.j ˙=joinK
dihval.m ˙=meetK
dihval.a A=AtomsK
dihval.h H=LHypK
dihval.i I=DIsoHKW
dihval.d D=DIsoBKW
dihval.c C=DIsoCKW
dihval.u U=DVecHKW
dihval.s S=LSubSpU
dihval.p ˙=LSSumU
Assertion dihlsscpre KHLWHXB¬X˙WIXS

Proof

Step Hyp Ref Expression
1 dihval.b B=BaseK
2 dihval.l ˙=K
3 dihval.j ˙=joinK
4 dihval.m ˙=meetK
5 dihval.a A=AtomsK
6 dihval.h H=LHypK
7 dihval.i I=DIsoHKW
8 dihval.d D=DIsoBKW
9 dihval.c C=DIsoCKW
10 dihval.u U=DVecHKW
11 dihval.s S=LSubSpU
12 dihval.p ˙=LSSumU
13 1 2 3 4 5 6 7 8 9 10 11 12 dihvalc KHLWHXB¬X˙WIX=ιuS|qA¬q˙Wq˙X˙W=Xu=Cq˙DX˙W
14 simp1l KHLWHXB¬X˙WqArA¬q˙Wq˙X˙W=X¬r˙Wr˙X˙W=XKHLWH
15 simp2l KHLWHXB¬X˙WqArA¬q˙Wq˙X˙W=X¬r˙Wr˙X˙W=XqA
16 simp3ll KHLWHXB¬X˙WqArA¬q˙Wq˙X˙W=X¬r˙Wr˙X˙W=X¬q˙W
17 15 16 jca KHLWHXB¬X˙WqArA¬q˙Wq˙X˙W=X¬r˙Wr˙X˙W=XqA¬q˙W
18 simp2r KHLWHXB¬X˙WqArA¬q˙Wq˙X˙W=X¬r˙Wr˙X˙W=XrA
19 simp3rl KHLWHXB¬X˙WqArA¬q˙Wq˙X˙W=X¬r˙Wr˙X˙W=X¬r˙W
20 18 19 jca KHLWHXB¬X˙WqArA¬q˙Wq˙X˙W=X¬r˙Wr˙X˙W=XrA¬r˙W
21 simp1rl KHLWHXB¬X˙WqArA¬q˙Wq˙X˙W=X¬r˙Wr˙X˙W=XXB
22 simp3lr KHLWHXB¬X˙WqArA¬q˙Wq˙X˙W=X¬r˙Wr˙X˙W=Xq˙X˙W=X
23 simp3rr KHLWHXB¬X˙WqArA¬q˙Wq˙X˙W=X¬r˙Wr˙X˙W=Xr˙X˙W=X
24 22 23 eqtr4d KHLWHXB¬X˙WqArA¬q˙Wq˙X˙W=X¬r˙Wr˙X˙W=Xq˙X˙W=r˙X˙W
25 1 2 3 4 5 6 8 9 10 12 dihjust KHLWHqA¬q˙WrA¬r˙WXBq˙X˙W=r˙X˙WCq˙DX˙W=Cr˙DX˙W
26 14 17 20 21 24 25 syl131anc KHLWHXB¬X˙WqArA¬q˙Wq˙X˙W=X¬r˙Wr˙X˙W=XCq˙DX˙W=Cr˙DX˙W
27 26 3exp KHLWHXB¬X˙WqArA¬q˙Wq˙X˙W=X¬r˙Wr˙X˙W=XCq˙DX˙W=Cr˙DX˙W
28 27 ralrimivv KHLWHXB¬X˙WqArA¬q˙Wq˙X˙W=X¬r˙Wr˙X˙W=XCq˙DX˙W=Cr˙DX˙W
29 1 2 3 4 5 6 lhpmcvr2 KHLWHXB¬X˙WqA¬q˙Wq˙X˙W=X
30 simpll KHLWHXB¬X˙WqA¬q˙WKHLWH
31 6 10 30 dvhlmod KHLWHXB¬X˙WqA¬q˙WULMod
32 2 5 6 10 9 11 diclss KHLWHqA¬q˙WCqS
33 32 adantlr KHLWHXB¬X˙WqA¬q˙WCqS
34 hllat KHLKLat
35 34 ad3antrrr KHLWHXB¬X˙WqA¬q˙WKLat
36 simplrl KHLWHXB¬X˙WqA¬q˙WXB
37 1 6 lhpbase WHWB
38 37 ad3antlr KHLWHXB¬X˙WqA¬q˙WWB
39 1 4 latmcl KLatXBWBX˙WB
40 35 36 38 39 syl3anc KHLWHXB¬X˙WqA¬q˙WX˙WB
41 1 2 4 latmle2 KLatXBWBX˙W˙W
42 35 36 38 41 syl3anc KHLWHXB¬X˙WqA¬q˙WX˙W˙W
43 1 2 6 10 8 11 diblss KHLWHX˙WBX˙W˙WDX˙WS
44 30 40 42 43 syl12anc KHLWHXB¬X˙WqA¬q˙WDX˙WS
45 11 12 lsmcl ULModCqSDX˙WSCq˙DX˙WS
46 31 33 44 45 syl3anc KHLWHXB¬X˙WqA¬q˙WCq˙DX˙WS
47 46 a1d KHLWHXB¬X˙WqA¬q˙Wq˙X˙W=XCq˙DX˙WS
48 47 expr KHLWHXB¬X˙WqA¬q˙Wq˙X˙W=XCq˙DX˙WS
49 48 impd KHLWHXB¬X˙WqA¬q˙Wq˙X˙W=XCq˙DX˙WS
50 49 ancld KHLWHXB¬X˙WqA¬q˙Wq˙X˙W=X¬q˙Wq˙X˙W=XCq˙DX˙WS
51 50 reximdva KHLWHXB¬X˙WqA¬q˙Wq˙X˙W=XqA¬q˙Wq˙X˙W=XCq˙DX˙WS
52 29 51 mpd KHLWHXB¬X˙WqA¬q˙Wq˙X˙W=XCq˙DX˙WS
53 breq1 q=rq˙Wr˙W
54 53 notbid q=r¬q˙W¬r˙W
55 oveq1 q=rq˙X˙W=r˙X˙W
56 55 eqeq1d q=rq˙X˙W=Xr˙X˙W=X
57 54 56 anbi12d q=r¬q˙Wq˙X˙W=X¬r˙Wr˙X˙W=X
58 fveq2 q=rCq=Cr
59 58 oveq1d q=rCq˙DX˙W=Cr˙DX˙W
60 57 59 reusv3 qA¬q˙Wq˙X˙W=XCq˙DX˙WSqArA¬q˙Wq˙X˙W=X¬r˙Wr˙X˙W=XCq˙DX˙W=Cr˙DX˙WuSqA¬q˙Wq˙X˙W=Xu=Cq˙DX˙W
61 52 60 syl KHLWHXB¬X˙WqArA¬q˙Wq˙X˙W=X¬r˙Wr˙X˙W=XCq˙DX˙W=Cr˙DX˙WuSqA¬q˙Wq˙X˙W=Xu=Cq˙DX˙W
62 28 61 mpbid KHLWHXB¬X˙WuSqA¬q˙Wq˙X˙W=Xu=Cq˙DX˙W
63 reusv1 qA¬q˙Wq˙X˙W=X∃!uSqA¬q˙Wq˙X˙W=Xu=Cq˙DX˙WuSqA¬q˙Wq˙X˙W=Xu=Cq˙DX˙W
64 29 63 syl KHLWHXB¬X˙W∃!uSqA¬q˙Wq˙X˙W=Xu=Cq˙DX˙WuSqA¬q˙Wq˙X˙W=Xu=Cq˙DX˙W
65 62 64 mpbird KHLWHXB¬X˙W∃!uSqA¬q˙Wq˙X˙W=Xu=Cq˙DX˙W
66 riotacl ∃!uSqA¬q˙Wq˙X˙W=Xu=Cq˙DX˙WιuS|qA¬q˙Wq˙X˙W=Xu=Cq˙DX˙WS
67 65 66 syl KHLWHXB¬X˙WιuS|qA¬q˙Wq˙X˙W=Xu=Cq˙DX˙WS
68 13 67 eqeltrd KHLWHXB¬X˙WIXS