Metamath Proof Explorer


Theorem dirkercncflem1

Description: If Y is a multiple of _pi then it belongs to an open inerval ( A (,) B ) such that for any other point y in the interval, cos y/2 and sin y/2 are nonzero. Such an interval is needed to apply De L'Hopital theorem. (Contributed by Glauco Siliprandi, 11-Dec-2019)

Ref Expression
Hypotheses dirkercncflem1.a A=Yπ
dirkercncflem1.b B=Y+π
dirkercncflem1.y φY
dirkercncflem1.ymod0 φYmod2π=0
Assertion dirkercncflem1 φYAByABYsiny20cosy20

Proof

Step Hyp Ref Expression
1 dirkercncflem1.a A=Yπ
2 dirkercncflem1.b B=Y+π
3 dirkercncflem1.y φY
4 dirkercncflem1.ymod0 φYmod2π=0
5 pire π
6 5 a1i φπ
7 3 6 resubcld φYπ
8 7 rexrd φYπ*
9 1 8 eqeltrid φA*
10 3 6 readdcld φY+π
11 10 rexrd φY+π*
12 2 11 eqeltrid φB*
13 pipos 0<π
14 ltsubpos πY0<πYπ<Y
15 13 14 mpbii πYYπ<Y
16 6 3 15 syl2anc φYπ<Y
17 1 16 eqbrtrid φA<Y
18 ltaddpos πY0<πY<Y+π
19 13 18 mpbii πYY<Y+π
20 6 3 19 syl2anc φY<Y+π
21 20 2 breqtrrdi φY<B
22 9 12 3 17 21 eliood φYAB
23 eldifi yABYyAB
24 23 elioored yABYy
25 24 adantl φyABYy
26 25 recnd φyABYy
27 2cnd φyABY2
28 picn π
29 28 a1i φyABYπ
30 2ne0 20
31 30 a1i φyABY20
32 5 13 gt0ne0ii π0
33 32 a1i φyABYπ0
34 26 27 29 31 33 divdiv1d φyABYy2π=y2π
35 2rp 2+
36 35 a1i φ2+
37 pirp π+
38 37 a1i φπ+
39 36 38 rpmulcld φ2π+
40 mod0 Y2π+Ymod2π=0Y2π
41 3 39 40 syl2anc φYmod2π=0Y2π
42 4 41 mpbid φY2π
43 peano2zm Y2πY2π1
44 42 43 syl φY2π1
45 44 ad2antrr φyABYy<YY2π1
46 44 zred φY2π1
47 46 adantr φyABYY2π1
48 1 7 eqeltrid φA
49 48 39 rerpdivcld φA2π
50 49 adantr φyABYA2π
51 39 rpred φ2π
52 51 adantr φyABY2π
53 39 rpne0d φ2π0
54 53 adantr φyABY2π0
55 25 52 54 redivcld φyABYy2π
56 51 recnd φ2π
57 56 53 dividd φ2π2π=1
58 57 eqcomd φ1=2π2π
59 58 oveq2d φY2π1=Y2π2π2π
60 3 recnd φY
61 60 56 56 53 divsubdird φY2π2π=Y2π2π2π
62 59 61 eqtr4d φY2π1=Y2π2π
63 3 51 resubcld φY2π
64 28 mullidi 1π=π
65 64 eqcomi π=1π
66 1lt2 1<2
67 1re 1
68 2re 2
69 67 68 5 13 ltmul1ii 1<21π<2π
70 66 69 mpbi 1π<2π
71 65 70 eqbrtri π<2π
72 71 a1i φπ<2π
73 6 51 3 72 ltsub2dd φY2π<Yπ
74 73 1 breqtrrdi φY2π<A
75 63 48 39 74 ltdiv1dd φY2π2π<A2π
76 62 75 eqbrtrd φY2π1<A2π
77 76 adantr φyABYY2π1<A2π
78 48 adantr φyABYA
79 39 adantr φyABY2π+
80 23 adantl φyABYyAB
81 9 adantr φyABYA*
82 12 adantr φyABYB*
83 elioo2 A*B*yAByA<yy<B
84 81 82 83 syl2anc φyABYyAByA<yy<B
85 80 84 mpbid φyABYyA<yy<B
86 85 simp2d φyABYA<y
87 78 25 79 86 ltdiv1dd φyABYA2π<y2π
88 47 50 55 77 87 lttrd φyABYY2π1<y2π
89 88 adantr φyABYy<YY2π1<y2π
90 24 ad2antlr φyABYy<Yy
91 3 ad2antrr φyABYy<YY
92 39 ad2antrr φyABYy<Y2π+
93 simpr φyABYy<Yy<Y
94 90 91 92 93 ltdiv1dd φyABYy<Yy2π<Y2π
95 60 56 53 divcld φY2π
96 95 adantr φyABYY2π
97 1cnd φyABY1
98 96 97 npcand φyABYY2π-1+1=Y2π
99 98 eqcomd φyABYY2π=Y2π-1+1
100 99 adantr φyABYy<YY2π=Y2π-1+1
101 94 100 breqtrd φyABYy<Yy2π<Y2π-1+1
102 btwnnz Y2π1Y2π1<y2πy2π<Y2π-1+1¬y2π
103 45 89 101 102 syl3anc φyABYy<Y¬y2π
104 42 ad2antrr φyABY¬y<YY2π
105 3 ad2antrr φyABY¬y<YY
106 25 adantr φyABY¬y<Yy
107 79 adantr φyABY¬y<Y2π+
108 25 adantr φyABYyYy
109 3 ad2antrr φyABYyYY
110 simpr φyABYyYyY
111 eldifsni yABYyY
112 111 necomd yABYYy
113 112 ad2antlr φyABYyYYy
114 108 109 110 113 leneltd φyABYyYy<Y
115 114 stoic1a φyABY¬y<Y¬yY
116 105 106 ltnled φyABY¬y<YY<y¬yY
117 115 116 mpbird φyABY¬y<YY<y
118 105 106 107 117 ltdiv1dd φyABY¬y<YY2π<y2π
119 2 10 eqeltrid φB
120 119 39 rerpdivcld φB2π
121 120 adantr φyABYB2π
122 3 39 rerpdivcld φY2π
123 122 adantr φyABYY2π
124 1red φyABY1
125 123 124 readdcld φyABYY2π+1
126 119 adantr φyABYB
127 85 simp3d φyABYy<B
128 25 126 79 127 ltdiv1dd φyABYy2π<B2π
129 2 oveq1i B2π=Y+π2π
130 28 a1i φπ
131 60 130 56 53 divdird φY+π2π=Y2π+π2π
132 6 39 rerpdivcld φπ2π
133 1red φ1
134 2cn 2
135 134 28 mulcomi 2π=π2
136 135 oveq2i π2π=ππ2
137 28 32 pm3.2i ππ0
138 2cnne0 220
139 divdiv1 πππ0220ππ2=ππ2
140 28 137 138 139 mp3an ππ2=ππ2
141 28 32 dividi ππ=1
142 141 oveq1i ππ2=12
143 136 140 142 3eqtr2i π2π=12
144 halflt1 12<1
145 143 144 eqbrtri π2π<1
146 145 a1i φπ2π<1
147 132 133 122 146 ltadd2dd φY2π+π2π<Y2π+1
148 131 147 eqbrtrd φY+π2π<Y2π+1
149 129 148 eqbrtrid φB2π<Y2π+1
150 149 adantr φyABYB2π<Y2π+1
151 55 121 125 128 150 lttrd φyABYy2π<Y2π+1
152 151 adantr φyABY¬y<Yy2π<Y2π+1
153 btwnnz Y2πY2π<y2πy2π<Y2π+1¬y2π
154 104 118 152 153 syl3anc φyABY¬y<Y¬y2π
155 103 154 pm2.61dan φyABY¬y2π
156 34 155 eqneltrd φyABY¬y2π
157 26 halfcld φyABYy2
158 sineq0 y2siny2=0y2π
159 157 158 syl φyABYsiny2=0y2π
160 156 159 mtbird φyABY¬siny2=0
161 160 neqned φyABYsiny20
162 34 oveq1d φyABYy2π+12=y2π+12
163 42 adantr φyABYY2π
164 1 a1i φA=Yπ
165 164 oveq1d φA+π=Y-π+π
166 60 130 npcand φY-π+π=Y
167 165 166 eqtr2d φY=A+π
168 167 oveq1d φY2π=A+π2π
169 48 recnd φA
170 169 130 56 53 divdird φA+π2π=A2π+π2π
171 130 mulridd φπ1=π
172 171 eqcomd φπ=π1
173 2cnd φ2
174 173 130 mulcomd φ2π=π2
175 172 174 oveq12d φπ2π=π1π2
176 1cnd φ1
177 30 a1i φ20
178 32 a1i φπ0
179 176 173 130 177 178 divcan5d φπ1π2=12
180 175 179 eqtrd φπ2π=12
181 180 oveq2d φA2π+π2π=A2π+12
182 168 170 181 3eqtrd φY2π=A2π+12
183 182 adantr φyABYY2π=A2π+12
184 124 rehalfcld φyABY12
185 50 55 184 87 ltadd1dd φyABYA2π+12<y2π+12
186 183 185 eqbrtrd φyABYY2π<y2π+12
187 55 121 184 128 ltadd1dd φyABYy2π+12<B2π+12
188 129 a1i φB2π=Y+π2π
189 188 oveq1d φB2π+12=Y+π2π+12
190 180 oveq2d φY2π+π2π=Y2π+12
191 131 190 eqtrd φY+π2π=Y2π+12
192 191 oveq1d φY+π2π+12=Y2π+12+12
193 176 halfcld φ12
194 95 193 193 addassd φY2π+12+12=Y2π+12+12
195 176 2halvesd φ12+12=1
196 195 oveq2d φY2π+12+12=Y2π+1
197 194 196 eqtrd φY2π+12+12=Y2π+1
198 189 192 197 3eqtrd φB2π+12=Y2π+1
199 198 adantr φyABYB2π+12=Y2π+1
200 187 199 breqtrd φyABYy2π+12<Y2π+1
201 btwnnz Y2πY2π<y2π+12y2π+12<Y2π+1¬y2π+12
202 163 186 200 201 syl3anc φyABY¬y2π+12
203 162 202 eqneltrd φyABY¬y2π+12
204 coseq0 y2cosy2=0y2π+12
205 157 204 syl φyABYcosy2=0y2π+12
206 203 205 mtbird φyABY¬cosy2=0
207 206 neqned φyABYcosy20
208 161 207 jca φyABYsiny20cosy20
209 208 ralrimiva φyABYsiny20cosy20
210 22 209 jca φYAByABYsiny20cosy20