Metamath Proof Explorer


Theorem dirkertrigeqlem1

Description: Sum of an even number of alternating cos values. (Contributed by Glauco Siliprandi, 11-Dec-2019)

Ref Expression
Assertion dirkertrigeqlem1 Kn=12Kcosnπ=0

Proof

Step Hyp Ref Expression
1 oveq2 x=12x=21
2 1 oveq2d x=112x=121
3 2 sumeq1d x=1n=12xcosnπ=n=121cosnπ
4 3 eqeq1d x=1n=12xcosnπ=0n=121cosnπ=0
5 oveq2 x=y2x=2y
6 5 oveq2d x=y12x=12y
7 6 sumeq1d x=yn=12xcosnπ=n=12ycosnπ
8 7 eqeq1d x=yn=12xcosnπ=0n=12ycosnπ=0
9 oveq2 x=y+12x=2y+1
10 9 oveq2d x=y+112x=12y+1
11 10 sumeq1d x=y+1n=12xcosnπ=n=12y+1cosnπ
12 11 eqeq1d x=y+1n=12xcosnπ=0n=12y+1cosnπ=0
13 oveq2 x=K2x=2K
14 13 oveq2d x=K12x=12K
15 14 sumeq1d x=Kn=12xcosnπ=n=12Kcosnπ
16 15 eqeq1d x=Kn=12xcosnπ=0n=12Kcosnπ=0
17 ax-1cn 1
18 17 2timesi 21=1+1
19 18 oveq2i 121=11+1
20 19 sumeq1i n=121cosnπ=n=11+1cosnπ
21 1z 1
22 uzid 111
23 21 22 ax-mp 11
24 23 a1i 11
25 elfzelz n11+1n
26 25 zcnd n11+1n
27 26 adantl n11+1n
28 picn π
29 28 a1i n11+1π
30 27 29 mulcld n11+1nπ
31 30 coscld n11+1cosnπ
32 id n=1+1n=1+1
33 1p1e2 1+1=2
34 32 33 eqtrdi n=1+1n=2
35 34 fvoveq1d n=1+1cosnπ=cos2π
36 24 31 35 fsump1 n=11+1cosnπ=n=11cosnπ+cos2π
37 36 mptru n=11+1cosnπ=n=11cosnπ+cos2π
38 coscl πcosπ
39 28 38 ax-mp cosπ
40 oveq1 n=1nπ=1π
41 28 mullidi 1π=π
42 40 41 eqtrdi n=1nπ=π
43 42 fveq2d n=1cosnπ=cosπ
44 43 fsum1 1cosπn=11cosnπ=cosπ
45 21 39 44 mp2an n=11cosnπ=cosπ
46 cospi cosπ=1
47 45 46 eqtri n=11cosnπ=1
48 cos2pi cos2π=1
49 47 48 oveq12i n=11cosnπ+cos2π=-1+1
50 neg1cn 1
51 1pneg1e0 1+-1=0
52 17 50 51 addcomli -1+1=0
53 37 49 52 3eqtri n=11+1cosnπ=0
54 20 53 eqtri n=121cosnπ=0
55 18 oveq2i 2y+21=2y+1+1
56 2cnd y2
57 nncn yy
58 17 a1i y1
59 56 57 58 adddid y2y+1=2y+21
60 56 57 mulcld y2y
61 60 58 58 addassd y2y+1+1=2y+1+1
62 55 59 61 3eqtr4a y2y+1=2y+1+1
63 62 oveq2d y12y+1=12y+1+1
64 63 sumeq1d yn=12y+1cosnπ=n=12y+1+1cosnπ
65 64 adantr yn=12ycosnπ=0n=12y+1cosnπ=n=12y+1+1cosnπ
66 1red y1
67 2re 2
68 67 a1i y2
69 nnre yy
70 68 69 remulcld y2y
71 70 66 readdcld y2y+1
72 2rp 2+
73 72 a1i y2+
74 nnrp yy+
75 73 74 rpmulcld y2y+
76 66 75 ltaddrp2d y1<2y+1
77 66 71 76 ltled y12y+1
78 2z 2
79 78 a1i y2
80 nnz yy
81 79 80 zmulcld y2y
82 81 peano2zd y2y+1
83 eluz 12y+12y+1112y+1
84 21 82 83 sylancr y2y+1112y+1
85 77 84 mpbird y2y+11
86 elfzelz n12y+1+1n
87 86 zcnd n12y+1+1n
88 28 a1i n12y+1+1π
89 87 88 mulcld n12y+1+1nπ
90 89 coscld n12y+1+1cosnπ
91 90 adantl yn12y+1+1cosnπ
92 fvoveq1 n=2y+1+1cosnπ=cos2y+1+1π
93 85 91 92 fsump1 yn=12y+1+1cosnπ=n=12y+1cosnπ+cos2y+1+1π
94 93 adantr yn=12ycosnπ=0n=12y+1+1cosnπ=n=12y+1cosnπ+cos2y+1+1π
95 1lt2 1<2
96 95 a1i y1<2
97 2t1e2 21=2
98 nnge1 y1y
99 66 69 73 lemul2d y1y212y
100 98 99 mpbid y212y
101 97 100 eqbrtrrid y22y
102 66 68 70 96 101 ltletrd y1<2y
103 66 70 102 ltled y12y
104 eluz 12y2y112y
105 21 81 104 sylancr y2y112y
106 103 105 mpbird y2y1
107 elfzelz n12y+1n
108 107 zcnd n12y+1n
109 28 a1i n12y+1π
110 108 109 mulcld n12y+1nπ
111 110 coscld n12y+1cosnπ
112 111 adantl yn12y+1cosnπ
113 fvoveq1 n=2y+1cosnπ=cos2y+1π
114 106 112 113 fsump1 yn=12y+1cosnπ=n=12ycosnπ+cos2y+1π
115 33 97 eqtr4i 1+1=21
116 115 a1i y1+1=21
117 116 oveq2d y2y+1+1=2y+21
118 117 61 59 3eqtr4d y2y+1+1=2y+1
119 118 fvoveq1d ycos2y+1+1π=cos2y+1π
120 57 58 addcld yy+1
121 28 a1i yπ
122 56 120 121 mulassd y2y+1π=2y+1π
123 122 oveq1d y2y+1π2π=2y+1π2π
124 120 121 mulcld yy+1π
125 0re 0
126 pipos 0<π
127 125 126 gtneii π0
128 127 a1i yπ0
129 73 rpne0d y20
130 124 121 56 128 129 divcan5d y2y+1π2π=y+1ππ
131 120 121 128 divcan4d yy+1ππ=y+1
132 123 130 131 3eqtrd y2y+1π2π=y+1
133 80 peano2zd yy+1
134 132 133 eqeltrd y2y+1π2π
135 peano2cn yy+1
136 57 135 syl yy+1
137 56 136 mulcld y2y+1
138 137 121 mulcld y2y+1π
139 coseq1 2y+1πcos2y+1π=12y+1π2π
140 138 139 syl ycos2y+1π=12y+1π2π
141 134 140 mpbird ycos2y+1π=1
142 119 141 eqtrd ycos2y+1+1π=1
143 114 142 oveq12d yn=12y+1cosnπ+cos2y+1+1π=n=12ycosnπ+cos2y+1π+1
144 143 adantr yn=12ycosnπ=0n=12y+1cosnπ+cos2y+1+1π=n=12ycosnπ+cos2y+1π+1
145 simpr yn=12ycosnπ=0n=12ycosnπ=0
146 60 58 121 adddird y2y+1π=2yπ+1π
147 60 121 mulcld y2yπ
148 41 121 eqeltrid y1π
149 147 148 addcomd y2yπ+1π=1π+2yπ
150 41 a1i y1π=π
151 56 57 mulcomd y2y=y2
152 151 oveq1d y2yπ=y2π
153 57 56 121 mulassd yy2π=y2π
154 152 153 eqtrd y2yπ=y2π
155 150 154 oveq12d y1π+2yπ=π+y2π
156 146 149 155 3eqtrd y2y+1π=π+y2π
157 156 fveq2d ycos2y+1π=cosπ+y2π
158 cosper πycosπ+y2π=cosπ
159 28 80 158 sylancr ycosπ+y2π=cosπ
160 46 a1i ycosπ=1
161 157 159 160 3eqtrd ycos2y+1π=1
162 161 adantr yn=12ycosnπ=0cos2y+1π=1
163 145 162 oveq12d yn=12ycosnπ=0n=12ycosnπ+cos2y+1π=0+-1
164 163 oveq1d yn=12ycosnπ=0n=12ycosnπ+cos2y+1π+1=0+-1+1
165 50 addlidi 0+-1=1
166 165 oveq1i 0+-1+1=-1+1
167 166 52 eqtri 0+-1+1=0
168 164 167 eqtrdi yn=12ycosnπ=0n=12ycosnπ+cos2y+1π+1=0
169 144 168 eqtrd yn=12ycosnπ=0n=12y+1cosnπ+cos2y+1+1π=0
170 65 94 169 3eqtrd yn=12ycosnπ=0n=12y+1cosnπ=0
171 170 ex yn=12ycosnπ=0n=12y+1cosnπ=0
172 4 8 12 16 54 171 nnind Kn=12Kcosnπ=0