| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ctex |
|
| 2 |
|
pwexr |
|
| 3 |
|
vsnex |
|
| 4 |
3
|
2a1i |
|
| 5 |
|
vex |
|
| 6 |
5
|
sneqr |
|
| 7 |
|
sneq |
|
| 8 |
6 7
|
impbii |
|
| 9 |
8
|
2a1i |
|
| 10 |
4 9
|
dom2lem |
|
| 11 |
|
f1f1orn |
|
| 12 |
10 11
|
syl |
|
| 13 |
|
f1oeng |
|
| 14 |
12 13
|
mpdan |
|
| 15 |
|
domen1 |
|
| 16 |
14 15
|
syl |
|
| 17 |
|
distop |
|
| 18 |
|
simpr |
|
| 19 |
5
|
snelpw |
|
| 20 |
18 19
|
sylib |
|
| 21 |
20
|
fmpttd |
|
| 22 |
21
|
frnd |
|
| 23 |
|
elpwi |
|
| 24 |
23
|
ad2antrl |
|
| 25 |
|
simprr |
|
| 26 |
24 25
|
sseldd |
|
| 27 |
|
eqidd |
|
| 28 |
|
sneq |
|
| 29 |
28
|
rspceeqv |
|
| 30 |
26 27 29
|
syl2anc |
|
| 31 |
|
vsnex |
|
| 32 |
|
eqid |
|
| 33 |
32
|
elrnmpt |
|
| 34 |
31 33
|
ax-mp |
|
| 35 |
30 34
|
sylibr |
|
| 36 |
|
vsnid |
|
| 37 |
36
|
a1i |
|
| 38 |
25
|
snssd |
|
| 39 |
|
eleq2 |
|
| 40 |
|
sseq1 |
|
| 41 |
39 40
|
anbi12d |
|
| 42 |
41
|
rspcev |
|
| 43 |
35 37 38 42
|
syl12anc |
|
| 44 |
43
|
ralrimivva |
|
| 45 |
|
basgen2 |
|
| 46 |
17 22 44 45
|
syl3anc |
|
| 47 |
46
|
adantr |
|
| 48 |
46 17
|
eqeltrd |
|
| 49 |
|
tgclb |
|
| 50 |
48 49
|
sylibr |
|
| 51 |
|
2ndci |
|
| 52 |
50 51
|
sylan |
|
| 53 |
47 52
|
eqeltrrd |
|
| 54 |
|
is2ndc |
|
| 55 |
|
vex |
|
| 56 |
|
simpr |
|
| 57 |
56 19
|
sylib |
|
| 58 |
|
simplrr |
|
| 59 |
57 58
|
eleqtrrd |
|
| 60 |
|
vsnid |
|
| 61 |
|
tg2 |
|
| 62 |
59 60 61
|
sylancl |
|
| 63 |
|
simprrl |
|
| 64 |
63
|
snssd |
|
| 65 |
|
simprrr |
|
| 66 |
64 65
|
eqssd |
|
| 67 |
|
simprl |
|
| 68 |
66 67
|
eqeltrd |
|
| 69 |
62 68
|
rexlimddv |
|
| 70 |
69
|
fmpttd |
|
| 71 |
70
|
frnd |
|
| 72 |
|
ssdomg |
|
| 73 |
55 71 72
|
mpsyl |
|
| 74 |
|
simprl |
|
| 75 |
|
domtr |
|
| 76 |
73 74 75
|
syl2anc |
|
| 77 |
76
|
rexlimdva2 |
|
| 78 |
54 77
|
biimtrid |
|
| 79 |
78
|
imp |
|
| 80 |
53 79
|
impbida |
|
| 81 |
16 80
|
bitrd |
|
| 82 |
1 2 81
|
pm5.21nii |
|