Metamath Proof Explorer


Theorem dsmmsubg

Description: The finite hull of a product of groups is additionally closed under negation and thus is a subgroup of the product. (Contributed by Stefan O'Rear, 11-Jan-2015)

Ref Expression
Hypotheses dsmmsubg.p P = S 𝑠 R
dsmmsubg.h H = Base S m R
dsmmsubg.i φ I W
dsmmsubg.s φ S V
dsmmsubg.r φ R : I Grp
Assertion dsmmsubg φ H SubGrp P

Proof

Step Hyp Ref Expression
1 dsmmsubg.p P = S 𝑠 R
2 dsmmsubg.h H = Base S m R
3 dsmmsubg.i φ I W
4 dsmmsubg.s φ S V
5 dsmmsubg.r φ R : I Grp
6 eqidd φ P 𝑠 H = P 𝑠 H
7 eqidd φ 0 P = 0 P
8 eqidd φ + P = + P
9 fex R : I Grp I W R V
10 5 3 9 syl2anc φ R V
11 eqid a Base S 𝑠 R | b dom R | a b 0 R b Fin = a Base S 𝑠 R | b dom R | a b 0 R b Fin
12 11 dsmmbase R V a Base S 𝑠 R | b dom R | a b 0 R b Fin = Base S m R
13 10 12 syl φ a Base S 𝑠 R | b dom R | a b 0 R b Fin = Base S m R
14 ssrab2 a Base S 𝑠 R | b dom R | a b 0 R b Fin Base S 𝑠 R
15 13 14 eqsstrrdi φ Base S m R Base S 𝑠 R
16 1 fveq2i Base P = Base S 𝑠 R
17 15 2 16 3sstr4g φ H Base P
18 grpmnd a Grp a Mnd
19 18 ssriv Grp Mnd
20 fss R : I Grp Grp Mnd R : I Mnd
21 5 19 20 sylancl φ R : I Mnd
22 eqid 0 P = 0 P
23 1 2 3 4 21 22 dsmm0cl φ 0 P H
24 3 3ad2ant1 φ a H b H I W
25 4 3ad2ant1 φ a H b H S V
26 21 3ad2ant1 φ a H b H R : I Mnd
27 simp2 φ a H b H a H
28 simp3 φ a H b H b H
29 eqid + P = + P
30 1 2 24 25 26 27 28 29 dsmmacl φ a H b H a + P b H
31 1 3 4 5 prdsgrpd φ P Grp
32 31 adantr φ a H P Grp
33 17 sselda φ a H a Base P
34 eqid Base P = Base P
35 eqid inv g P = inv g P
36 34 35 grpinvcl P Grp a Base P inv g P a Base P
37 32 33 36 syl2anc φ a H inv g P a Base P
38 simpr φ a H a H
39 eqid S m R = S m R
40 3 adantr φ a H I W
41 5 ffnd φ R Fn I
42 41 adantr φ a H R Fn I
43 1 39 34 2 40 42 dsmmelbas φ a H a H a Base P b I | a b 0 R b Fin
44 38 43 mpbid φ a H a Base P b I | a b 0 R b Fin
45 44 simprd φ a H b I | a b 0 R b Fin
46 3 ad2antrr φ a H b I I W
47 4 ad2antrr φ a H b I S V
48 5 ad2antrr φ a H b I R : I Grp
49 33 adantr φ a H b I a Base P
50 simpr φ a H b I b I
51 1 46 47 48 34 35 49 50 prdsinvgd2 φ a H b I inv g P a b = inv g R b a b
52 51 adantrr φ a H b I a b = 0 R b inv g P a b = inv g R b a b
53 fveq2 a b = 0 R b inv g R b a b = inv g R b 0 R b
54 53 ad2antll φ a H b I a b = 0 R b inv g R b a b = inv g R b 0 R b
55 5 ffvelrnda φ b I R b Grp
56 55 adantlr φ a H b I R b Grp
57 eqid 0 R b = 0 R b
58 eqid inv g R b = inv g R b
59 57 58 grpinvid R b Grp inv g R b 0 R b = 0 R b
60 56 59 syl φ a H b I inv g R b 0 R b = 0 R b
61 60 adantrr φ a H b I a b = 0 R b inv g R b 0 R b = 0 R b
62 52 54 61 3eqtrd φ a H b I a b = 0 R b inv g P a b = 0 R b
63 62 expr φ a H b I a b = 0 R b inv g P a b = 0 R b
64 63 necon3d φ a H b I inv g P a b 0 R b a b 0 R b
65 64 ss2rabdv φ a H b I | inv g P a b 0 R b b I | a b 0 R b
66 45 65 ssfid φ a H b I | inv g P a b 0 R b Fin
67 1 39 34 2 40 42 dsmmelbas φ a H inv g P a H inv g P a Base P b I | inv g P a b 0 R b Fin
68 37 66 67 mpbir2and φ a H inv g P a H
69 6 7 8 17 23 30 68 31 issubgrpd2 φ H SubGrp P