Metamath Proof Explorer


Theorem dsmmsubg

Description: The finite hull of a product of groups is additionally closed under negation and thus is a subgroup of the product. (Contributed by Stefan O'Rear, 11-Jan-2015)

Ref Expression
Hypotheses dsmmsubg.p P=S𝑠R
dsmmsubg.h H=BaseSmR
dsmmsubg.i φIW
dsmmsubg.s φSV
dsmmsubg.r φR:IGrp
Assertion dsmmsubg φHSubGrpP

Proof

Step Hyp Ref Expression
1 dsmmsubg.p P=S𝑠R
2 dsmmsubg.h H=BaseSmR
3 dsmmsubg.i φIW
4 dsmmsubg.s φSV
5 dsmmsubg.r φR:IGrp
6 eqidd φP𝑠H=P𝑠H
7 eqidd φ0P=0P
8 eqidd φ+P=+P
9 5 3 fexd φRV
10 eqid aBaseS𝑠R|bdomR|ab0RbFin=aBaseS𝑠R|bdomR|ab0RbFin
11 10 dsmmbase RVaBaseS𝑠R|bdomR|ab0RbFin=BaseSmR
12 9 11 syl φaBaseS𝑠R|bdomR|ab0RbFin=BaseSmR
13 ssrab2 aBaseS𝑠R|bdomR|ab0RbFinBaseS𝑠R
14 12 13 eqsstrrdi φBaseSmRBaseS𝑠R
15 1 fveq2i BaseP=BaseS𝑠R
16 14 2 15 3sstr4g φHBaseP
17 grpmnd aGrpaMnd
18 17 ssriv GrpMnd
19 fss R:IGrpGrpMndR:IMnd
20 5 18 19 sylancl φR:IMnd
21 eqid 0P=0P
22 1 2 3 4 20 21 dsmm0cl φ0PH
23 3 3ad2ant1 φaHbHIW
24 4 3ad2ant1 φaHbHSV
25 20 3ad2ant1 φaHbHR:IMnd
26 simp2 φaHbHaH
27 simp3 φaHbHbH
28 eqid +P=+P
29 1 2 23 24 25 26 27 28 dsmmacl φaHbHa+PbH
30 1 3 4 5 prdsgrpd φPGrp
31 30 adantr φaHPGrp
32 16 sselda φaHaBaseP
33 eqid BaseP=BaseP
34 eqid invgP=invgP
35 33 34 grpinvcl PGrpaBasePinvgPaBaseP
36 31 32 35 syl2anc φaHinvgPaBaseP
37 simpr φaHaH
38 eqid SmR=SmR
39 3 adantr φaHIW
40 5 ffnd φRFnI
41 40 adantr φaHRFnI
42 1 38 33 2 39 41 dsmmelbas φaHaHaBasePbI|ab0RbFin
43 37 42 mpbid φaHaBasePbI|ab0RbFin
44 43 simprd φaHbI|ab0RbFin
45 3 ad2antrr φaHbIIW
46 4 ad2antrr φaHbISV
47 5 ad2antrr φaHbIR:IGrp
48 32 adantr φaHbIaBaseP
49 simpr φaHbIbI
50 1 45 46 47 33 34 48 49 prdsinvgd2 φaHbIinvgPab=invgRbab
51 50 adantrr φaHbIab=0RbinvgPab=invgRbab
52 fveq2 ab=0RbinvgRbab=invgRb0Rb
53 52 ad2antll φaHbIab=0RbinvgRbab=invgRb0Rb
54 5 ffvelcdmda φbIRbGrp
55 54 adantlr φaHbIRbGrp
56 eqid 0Rb=0Rb
57 eqid invgRb=invgRb
58 56 57 grpinvid RbGrpinvgRb0Rb=0Rb
59 55 58 syl φaHbIinvgRb0Rb=0Rb
60 59 adantrr φaHbIab=0RbinvgRb0Rb=0Rb
61 51 53 60 3eqtrd φaHbIab=0RbinvgPab=0Rb
62 61 expr φaHbIab=0RbinvgPab=0Rb
63 62 necon3d φaHbIinvgPab0Rbab0Rb
64 63 ss2rabdv φaHbI|invgPab0RbbI|ab0Rb
65 44 64 ssfid φaHbI|invgPab0RbFin
66 1 38 33 2 39 41 dsmmelbas φaHinvgPaHinvgPaBasePbI|invgPab0RbFin
67 36 65 66 mpbir2and φaHinvgPaH
68 6 7 8 16 22 29 67 30 issubgrpd2 φHSubGrpP