Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Brendan Leahy
dvacos
Next ⟩
dvreasin
Metamath Proof Explorer
Ascii
Unicode
Theorem
dvacos
Description:
Derivative of arccosine.
(Contributed by
Brendan Leahy
, 18-Dec-2018)
Ref
Expression
Hypothesis
dvasin.d
⊢
D
=
ℂ
∖
−∞
−
1
∪
1
+∞
Assertion
dvacos
⊢
ℂ
D
arccos
↾
D
=
x
∈
D
⟼
−
1
1
−
x
2
Proof
Step
Hyp
Ref
Expression
1
dvasin.d
⊢
D
=
ℂ
∖
−∞
−
1
∪
1
+∞
2
df-acos
π
⊢
arccos
=
x
∈
ℂ
⟼
π
2
−
arcsin
x
3
2
reseq1i
π
⊢
arccos
↾
D
=
x
∈
ℂ
⟼
π
2
−
arcsin
x
↾
D
4
difss
⊢
ℂ
∖
−∞
−
1
∪
1
+∞
⊆
ℂ
5
1
4
eqsstri
⊢
D
⊆
ℂ
6
resmpt
π
π
⊢
D
⊆
ℂ
→
x
∈
ℂ
⟼
π
2
−
arcsin
x
↾
D
=
x
∈
D
⟼
π
2
−
arcsin
x
7
5
6
ax-mp
π
π
⊢
x
∈
ℂ
⟼
π
2
−
arcsin
x
↾
D
=
x
∈
D
⟼
π
2
−
arcsin
x
8
3
7
eqtri
π
⊢
arccos
↾
D
=
x
∈
D
⟼
π
2
−
arcsin
x
9
8
oveq2i
π
⊢
ℂ
D
arccos
↾
D
=
d
x
∈
D
π
2
−
arcsin
x
d
ℂ
x
10
cnelprrecn
⊢
ℂ
∈
ℝ
ℂ
11
10
a1i
⊢
⊤
→
ℂ
∈
ℝ
ℂ
12
halfpire
π
⊢
π
2
∈
ℝ
13
12
recni
π
⊢
π
2
∈
ℂ
14
13
a1i
π
⊢
⊤
∧
x
∈
D
→
π
2
∈
ℂ
15
c0ex
⊢
0
∈
V
16
15
a1i
⊢
⊤
∧
x
∈
D
→
0
∈
V
17
13
a1i
π
⊢
⊤
∧
x
∈
ℂ
→
π
2
∈
ℂ
18
15
a1i
⊢
⊤
∧
x
∈
ℂ
→
0
∈
V
19
13
a1i
π
⊢
⊤
→
π
2
∈
ℂ
20
11
19
dvmptc
π
⊢
⊤
→
d
x
∈
ℂ
π
2
d
ℂ
x
=
x
∈
ℂ
⟼
0
21
5
a1i
⊢
⊤
→
D
⊆
ℂ
22
eqid
⊢
TopOpen
ℂ
fld
=
TopOpen
ℂ
fld
23
22
cnfldtopon
⊢
TopOpen
ℂ
fld
∈
TopOn
ℂ
24
23
toponrestid
⊢
TopOpen
ℂ
fld
=
TopOpen
ℂ
fld
↾
𝑡
ℂ
25
22
recld2
⊢
ℝ
∈
Clsd
TopOpen
ℂ
fld
26
neg1rr
⊢
−
1
∈
ℝ
27
iocmnfcld
⊢
−
1
∈
ℝ
→
−∞
−
1
∈
Clsd
topGen
ran
.
28
26
27
ax-mp
⊢
−∞
−
1
∈
Clsd
topGen
ran
.
29
22
tgioo2
⊢
topGen
ran
.
=
TopOpen
ℂ
fld
↾
𝑡
ℝ
30
29
fveq2i
⊢
Clsd
topGen
ran
.
=
Clsd
TopOpen
ℂ
fld
↾
𝑡
ℝ
31
28
30
eleqtri
⊢
−∞
−
1
∈
Clsd
TopOpen
ℂ
fld
↾
𝑡
ℝ
32
restcldr
⊢
ℝ
∈
Clsd
TopOpen
ℂ
fld
∧
−∞
−
1
∈
Clsd
TopOpen
ℂ
fld
↾
𝑡
ℝ
→
−∞
−
1
∈
Clsd
TopOpen
ℂ
fld
33
25
31
32
mp2an
⊢
−∞
−
1
∈
Clsd
TopOpen
ℂ
fld
34
1re
⊢
1
∈
ℝ
35
icopnfcld
⊢
1
∈
ℝ
→
1
+∞
∈
Clsd
topGen
ran
.
36
34
35
ax-mp
⊢
1
+∞
∈
Clsd
topGen
ran
.
37
36
30
eleqtri
⊢
1
+∞
∈
Clsd
TopOpen
ℂ
fld
↾
𝑡
ℝ
38
restcldr
⊢
ℝ
∈
Clsd
TopOpen
ℂ
fld
∧
1
+∞
∈
Clsd
TopOpen
ℂ
fld
↾
𝑡
ℝ
→
1
+∞
∈
Clsd
TopOpen
ℂ
fld
39
25
37
38
mp2an
⊢
1
+∞
∈
Clsd
TopOpen
ℂ
fld
40
uncld
⊢
−∞
−
1
∈
Clsd
TopOpen
ℂ
fld
∧
1
+∞
∈
Clsd
TopOpen
ℂ
fld
→
−∞
−
1
∪
1
+∞
∈
Clsd
TopOpen
ℂ
fld
41
33
39
40
mp2an
⊢
−∞
−
1
∪
1
+∞
∈
Clsd
TopOpen
ℂ
fld
42
23
toponunii
⊢
ℂ
=
⋃
TopOpen
ℂ
fld
43
42
cldopn
⊢
−∞
−
1
∪
1
+∞
∈
Clsd
TopOpen
ℂ
fld
→
ℂ
∖
−∞
−
1
∪
1
+∞
∈
TopOpen
ℂ
fld
44
41
43
ax-mp
⊢
ℂ
∖
−∞
−
1
∪
1
+∞
∈
TopOpen
ℂ
fld
45
1
44
eqeltri
⊢
D
∈
TopOpen
ℂ
fld
46
45
a1i
⊢
⊤
→
D
∈
TopOpen
ℂ
fld
47
11
17
18
20
21
24
22
46
dvmptres
π
⊢
⊤
→
d
x
∈
D
π
2
d
ℂ
x
=
x
∈
D
⟼
0
48
5
sseli
⊢
x
∈
D
→
x
∈
ℂ
49
asincl
⊢
x
∈
ℂ
→
arcsin
x
∈
ℂ
50
48
49
syl
⊢
x
∈
D
→
arcsin
x
∈
ℂ
51
50
adantl
⊢
⊤
∧
x
∈
D
→
arcsin
x
∈
ℂ
52
ovexd
⊢
⊤
∧
x
∈
D
→
1
1
−
x
2
∈
V
53
asinf
⊢
arcsin
:
ℂ
⟶
ℂ
54
53
a1i
⊢
⊤
→
arcsin
:
ℂ
⟶
ℂ
55
54
21
feqresmpt
⊢
⊤
→
arcsin
↾
D
=
x
∈
D
⟼
arcsin
x
56
55
oveq2d
⊢
⊤
→
ℂ
D
arcsin
↾
D
=
d
x
∈
D
arcsin
x
d
ℂ
x
57
1
dvasin
⊢
ℂ
D
arcsin
↾
D
=
x
∈
D
⟼
1
1
−
x
2
58
56
57
eqtr3di
⊢
⊤
→
d
x
∈
D
arcsin
x
d
ℂ
x
=
x
∈
D
⟼
1
1
−
x
2
59
11
14
16
47
51
52
58
dvmptsub
π
⊢
⊤
→
d
x
∈
D
π
2
−
arcsin
x
d
ℂ
x
=
x
∈
D
⟼
0
−
1
1
−
x
2
60
59
mptru
π
⊢
d
x
∈
D
π
2
−
arcsin
x
d
ℂ
x
=
x
∈
D
⟼
0
−
1
1
−
x
2
61
df-neg
⊢
−
1
1
−
x
2
=
0
−
1
1
−
x
2
62
1cnd
⊢
x
∈
D
→
1
∈
ℂ
63
ax-1cn
⊢
1
∈
ℂ
64
48
sqcld
⊢
x
∈
D
→
x
2
∈
ℂ
65
subcl
⊢
1
∈
ℂ
∧
x
2
∈
ℂ
→
1
−
x
2
∈
ℂ
66
63
64
65
sylancr
⊢
x
∈
D
→
1
−
x
2
∈
ℂ
67
66
sqrtcld
⊢
x
∈
D
→
1
−
x
2
∈
ℂ
68
eldifn
⊢
x
∈
ℂ
∖
−∞
−
1
∪
1
+∞
→
¬
x
∈
−∞
−
1
∪
1
+∞
69
68
1
eleq2s
⊢
x
∈
D
→
¬
x
∈
−∞
−
1
∪
1
+∞
70
mnfxr
⊢
−∞
∈
ℝ
*
71
26
rexri
⊢
−
1
∈
ℝ
*
72
mnflt
⊢
−
1
∈
ℝ
→
−∞
<
−
1
73
26
72
ax-mp
⊢
−∞
<
−
1
74
ubioc1
⊢
−∞
∈
ℝ
*
∧
−
1
∈
ℝ
*
∧
−∞
<
−
1
→
−
1
∈
−∞
−
1
75
70
71
73
74
mp3an
⊢
−
1
∈
−∞
−
1
76
eleq1
⊢
x
=
−
1
→
x
∈
−∞
−
1
↔
−
1
∈
−∞
−
1
77
75
76
mpbiri
⊢
x
=
−
1
→
x
∈
−∞
−
1
78
34
rexri
⊢
1
∈
ℝ
*
79
pnfxr
⊢
+∞
∈
ℝ
*
80
ltpnf
⊢
1
∈
ℝ
→
1
<
+∞
81
34
80
ax-mp
⊢
1
<
+∞
82
lbico1
⊢
1
∈
ℝ
*
∧
+∞
∈
ℝ
*
∧
1
<
+∞
→
1
∈
1
+∞
83
78
79
81
82
mp3an
⊢
1
∈
1
+∞
84
eleq1
⊢
x
=
1
→
x
∈
1
+∞
↔
1
∈
1
+∞
85
83
84
mpbiri
⊢
x
=
1
→
x
∈
1
+∞
86
77
85
orim12i
⊢
x
=
−
1
∨
x
=
1
→
x
∈
−∞
−
1
∨
x
∈
1
+∞
87
86
orcoms
⊢
x
=
1
∨
x
=
−
1
→
x
∈
−∞
−
1
∨
x
∈
1
+∞
88
elun
⊢
x
∈
−∞
−
1
∪
1
+∞
↔
x
∈
−∞
−
1
∨
x
∈
1
+∞
89
87
88
sylibr
⊢
x
=
1
∨
x
=
−
1
→
x
∈
−∞
−
1
∪
1
+∞
90
69
89
nsyl
⊢
x
∈
D
→
¬
x
=
1
∨
x
=
−
1
91
sq1
⊢
1
2
=
1
92
1cnd
⊢
x
∈
ℂ
∧
1
−
x
2
=
0
→
1
∈
ℂ
93
sqcl
⊢
x
∈
ℂ
→
x
2
∈
ℂ
94
93
adantr
⊢
x
∈
ℂ
∧
1
−
x
2
=
0
→
x
2
∈
ℂ
95
63
93
65
sylancr
⊢
x
∈
ℂ
→
1
−
x
2
∈
ℂ
96
95
adantr
⊢
x
∈
ℂ
∧
1
−
x
2
=
0
→
1
−
x
2
∈
ℂ
97
simpr
⊢
x
∈
ℂ
∧
1
−
x
2
=
0
→
1
−
x
2
=
0
98
96
97
sqr00d
⊢
x
∈
ℂ
∧
1
−
x
2
=
0
→
1
−
x
2
=
0
99
92
94
98
subeq0d
⊢
x
∈
ℂ
∧
1
−
x
2
=
0
→
1
=
x
2
100
91
99
eqtr2id
⊢
x
∈
ℂ
∧
1
−
x
2
=
0
→
x
2
=
1
2
101
100
ex
⊢
x
∈
ℂ
→
1
−
x
2
=
0
→
x
2
=
1
2
102
sqeqor
⊢
x
∈
ℂ
∧
1
∈
ℂ
→
x
2
=
1
2
↔
x
=
1
∨
x
=
−
1
103
63
102
mpan2
⊢
x
∈
ℂ
→
x
2
=
1
2
↔
x
=
1
∨
x
=
−
1
104
101
103
sylibd
⊢
x
∈
ℂ
→
1
−
x
2
=
0
→
x
=
1
∨
x
=
−
1
105
104
necon3bd
⊢
x
∈
ℂ
→
¬
x
=
1
∨
x
=
−
1
→
1
−
x
2
≠
0
106
48
90
105
sylc
⊢
x
∈
D
→
1
−
x
2
≠
0
107
62
67
106
divnegd
⊢
x
∈
D
→
−
1
1
−
x
2
=
−
1
1
−
x
2
108
61
107
eqtr3id
⊢
x
∈
D
→
0
−
1
1
−
x
2
=
−
1
1
−
x
2
109
108
mpteq2ia
⊢
x
∈
D
⟼
0
−
1
1
−
x
2
=
x
∈
D
⟼
−
1
1
−
x
2
110
9
60
109
3eqtri
⊢
ℂ
D
arccos
↾
D
=
x
∈
D
⟼
−
1
1
−
x
2