Metamath Proof Explorer


Theorem dvacos

Description: Derivative of arccosine. (Contributed by Brendan Leahy, 18-Dec-2018)

Ref Expression
Hypothesis dvasin.d D=−∞11+∞
Assertion dvacos DarccosD=xD11x2

Proof

Step Hyp Ref Expression
1 dvasin.d D=−∞11+∞
2 df-acos arccos=xπ2arcsinx
3 2 reseq1i arccosD=xπ2arcsinxD
4 difss −∞11+∞
5 1 4 eqsstri D
6 resmpt Dxπ2arcsinxD=xDπ2arcsinx
7 5 6 ax-mp xπ2arcsinxD=xDπ2arcsinx
8 3 7 eqtri arccosD=xDπ2arcsinx
9 8 oveq2i DarccosD=dxDπ2arcsinxdx
10 cnelprrecn
11 10 a1i
12 halfpire π2
13 12 recni π2
14 13 a1i xDπ2
15 c0ex 0V
16 15 a1i xD0V
17 13 a1i xπ2
18 15 a1i x0V
19 13 a1i π2
20 11 19 dvmptc dxπ2dx=x0
21 5 a1i D
22 eqid TopOpenfld=TopOpenfld
23 22 cnfldtopon TopOpenfldTopOn
24 23 toponrestid TopOpenfld=TopOpenfld𝑡
25 22 recld2 ClsdTopOpenfld
26 neg1rr 1
27 iocmnfcld 1−∞1ClsdtopGenran.
28 26 27 ax-mp −∞1ClsdtopGenran.
29 22 tgioo2 topGenran.=TopOpenfld𝑡
30 29 fveq2i ClsdtopGenran.=ClsdTopOpenfld𝑡
31 28 30 eleqtri −∞1ClsdTopOpenfld𝑡
32 restcldr ClsdTopOpenfld−∞1ClsdTopOpenfld𝑡−∞1ClsdTopOpenfld
33 25 31 32 mp2an −∞1ClsdTopOpenfld
34 1re 1
35 icopnfcld 11+∞ClsdtopGenran.
36 34 35 ax-mp 1+∞ClsdtopGenran.
37 36 30 eleqtri 1+∞ClsdTopOpenfld𝑡
38 restcldr ClsdTopOpenfld1+∞ClsdTopOpenfld𝑡1+∞ClsdTopOpenfld
39 25 37 38 mp2an 1+∞ClsdTopOpenfld
40 uncld −∞1ClsdTopOpenfld1+∞ClsdTopOpenfld−∞11+∞ClsdTopOpenfld
41 33 39 40 mp2an −∞11+∞ClsdTopOpenfld
42 23 toponunii =TopOpenfld
43 42 cldopn −∞11+∞ClsdTopOpenfld−∞11+∞TopOpenfld
44 41 43 ax-mp −∞11+∞TopOpenfld
45 1 44 eqeltri DTopOpenfld
46 45 a1i DTopOpenfld
47 11 17 18 20 21 24 22 46 dvmptres dxDπ2dx=xD0
48 5 sseli xDx
49 asincl xarcsinx
50 48 49 syl xDarcsinx
51 50 adantl xDarcsinx
52 ovexd xD11x2V
53 asinf arcsin:
54 53 a1i arcsin:
55 54 21 feqresmpt arcsinD=xDarcsinx
56 55 oveq2d DarcsinD=dxDarcsinxdx
57 1 dvasin DarcsinD=xD11x2
58 56 57 eqtr3di dxDarcsinxdx=xD11x2
59 11 14 16 47 51 52 58 dvmptsub dxDπ2arcsinxdx=xD011x2
60 59 mptru dxDπ2arcsinxdx=xD011x2
61 df-neg 11x2=011x2
62 1cnd xD1
63 ax-1cn 1
64 48 sqcld xDx2
65 subcl 1x21x2
66 63 64 65 sylancr xD1x2
67 66 sqrtcld xD1x2
68 eldifn x−∞11+∞¬x−∞11+∞
69 68 1 eleq2s xD¬x−∞11+∞
70 mnfxr −∞*
71 26 rexri 1*
72 mnflt 1−∞<1
73 26 72 ax-mp −∞<1
74 ubioc1 −∞*1*−∞<11−∞1
75 70 71 73 74 mp3an 1−∞1
76 eleq1 x=1x−∞11−∞1
77 75 76 mpbiri x=1x−∞1
78 34 rexri 1*
79 pnfxr +∞*
80 ltpnf 11<+∞
81 34 80 ax-mp 1<+∞
82 lbico1 1*+∞*1<+∞11+∞
83 78 79 81 82 mp3an 11+∞
84 eleq1 x=1x1+∞11+∞
85 83 84 mpbiri x=1x1+∞
86 77 85 orim12i x=1x=1x−∞1x1+∞
87 86 orcoms x=1x=1x−∞1x1+∞
88 elun x−∞11+∞x−∞1x1+∞
89 87 88 sylibr x=1x=1x−∞11+∞
90 69 89 nsyl xD¬x=1x=1
91 sq1 12=1
92 1cnd x1x2=01
93 sqcl xx2
94 93 adantr x1x2=0x2
95 63 93 65 sylancr x1x2
96 95 adantr x1x2=01x2
97 simpr x1x2=01x2=0
98 96 97 sqr00d x1x2=01x2=0
99 92 94 98 subeq0d x1x2=01=x2
100 91 99 eqtr2id x1x2=0x2=12
101 100 ex x1x2=0x2=12
102 sqeqor x1x2=12x=1x=1
103 63 102 mpan2 xx2=12x=1x=1
104 101 103 sylibd x1x2=0x=1x=1
105 104 necon3bd x¬x=1x=11x20
106 48 90 105 sylc xD1x20
107 62 67 106 divnegd xD11x2=11x2
108 61 107 eqtr3id xD011x2=11x2
109 108 mpteq2ia xD011x2=xD11x2
110 9 60 109 3eqtri DarccosD=xD11x2