| Step | Hyp | Ref | Expression | 
						
							| 1 |  | dvbdfbdioolem2.a |  | 
						
							| 2 |  | dvbdfbdioolem2.b |  | 
						
							| 3 |  | dvbdfbdioolem2.altb |  | 
						
							| 4 |  | dvbdfbdioolem2.f |  | 
						
							| 5 |  | dvbdfbdioolem2.dmdv |  | 
						
							| 6 |  | dvbdfbdioolem2.k |  | 
						
							| 7 |  | dvbdfbdioolem2.dvbd |  | 
						
							| 8 |  | dvbdfbdioolem2.m |  | 
						
							| 9 | 4 | ffvelcdmda |  | 
						
							| 10 | 9 | recnd |  | 
						
							| 11 | 10 | abscld |  | 
						
							| 12 | 1 | rexrd |  | 
						
							| 13 | 2 | rexrd |  | 
						
							| 14 | 1 2 | readdcld |  | 
						
							| 15 | 14 | rehalfcld |  | 
						
							| 16 |  | avglt1 |  | 
						
							| 17 | 1 2 16 | syl2anc |  | 
						
							| 18 | 3 17 | mpbid |  | 
						
							| 19 |  | avglt2 |  | 
						
							| 20 | 1 2 19 | syl2anc |  | 
						
							| 21 | 3 20 | mpbid |  | 
						
							| 22 | 12 13 15 18 21 | eliood |  | 
						
							| 23 | 4 22 | ffvelcdmd |  | 
						
							| 24 | 23 | recnd |  | 
						
							| 25 | 24 | abscld |  | 
						
							| 26 | 25 | adantr |  | 
						
							| 27 | 11 26 | resubcld |  | 
						
							| 28 | 6 | adantr |  | 
						
							| 29 | 2 | adantr |  | 
						
							| 30 | 1 | adantr |  | 
						
							| 31 | 29 30 | resubcld |  | 
						
							| 32 | 28 31 | remulcld |  | 
						
							| 33 | 24 | adantr |  | 
						
							| 34 | 10 33 | subcld |  | 
						
							| 35 | 34 | abscld |  | 
						
							| 36 | 10 33 | abs2difd |  | 
						
							| 37 |  | simpll |  | 
						
							| 38 | 15 | rexrd |  | 
						
							| 39 | 38 | ad2antrr |  | 
						
							| 40 | 13 | ad2antrr |  | 
						
							| 41 |  | elioore |  | 
						
							| 42 | 41 | adantl |  | 
						
							| 43 | 42 | adantr |  | 
						
							| 44 |  | simpr |  | 
						
							| 45 | 12 | adantr |  | 
						
							| 46 | 13 | adantr |  | 
						
							| 47 |  | simpr |  | 
						
							| 48 |  | iooltub |  | 
						
							| 49 | 45 46 47 48 | syl3anc |  | 
						
							| 50 | 49 | adantr |  | 
						
							| 51 | 39 40 43 44 50 | eliood |  | 
						
							| 52 | 1 | adantr |  | 
						
							| 53 | 2 | adantr |  | 
						
							| 54 | 4 | adantr |  | 
						
							| 55 | 5 | adantr |  | 
						
							| 56 | 6 | adantr |  | 
						
							| 57 |  | 2fveq3 |  | 
						
							| 58 | 57 | breq1d |  | 
						
							| 59 | 58 | cbvralvw |  | 
						
							| 60 | 7 59 | sylib |  | 
						
							| 61 | 60 | adantr |  | 
						
							| 62 | 22 | adantr |  | 
						
							| 63 |  | simpr |  | 
						
							| 64 | 52 53 54 55 56 61 62 63 | dvbdfbdioolem1 |  | 
						
							| 65 | 64 | simprd |  | 
						
							| 66 | 37 51 65 | syl2anc |  | 
						
							| 67 |  | fveq2 |  | 
						
							| 68 | 67 | eqcomd |  | 
						
							| 69 | 68 | adantl |  | 
						
							| 70 | 24 | adantr |  | 
						
							| 71 | 69 70 | eqeltrd |  | 
						
							| 72 | 71 69 | subeq0bd |  | 
						
							| 73 | 72 | abs00bd |  | 
						
							| 74 | 6 | adantr |  | 
						
							| 75 | 2 | adantr |  | 
						
							| 76 | 1 | adantr |  | 
						
							| 77 | 75 76 | resubcld |  | 
						
							| 78 |  | 0red |  | 
						
							| 79 |  | ioossre |  | 
						
							| 80 |  | dvfre |  | 
						
							| 81 | 4 79 80 | sylancl |  | 
						
							| 82 | 22 5 | eleqtrrd |  | 
						
							| 83 | 81 82 | ffvelcdmd |  | 
						
							| 84 | 83 | recnd |  | 
						
							| 85 | 84 | abscld |  | 
						
							| 86 | 84 | absge0d |  | 
						
							| 87 |  | 2fveq3 |  | 
						
							| 88 | 87 | breq1d |  | 
						
							| 89 | 88 | rspccva |  | 
						
							| 90 | 7 22 89 | syl2anc |  | 
						
							| 91 | 78 85 6 86 90 | letrd |  | 
						
							| 92 | 91 | adantr |  | 
						
							| 93 | 2 1 | resubcld |  | 
						
							| 94 | 1 2 | posdifd |  | 
						
							| 95 | 3 94 | mpbid |  | 
						
							| 96 | 78 93 95 | ltled |  | 
						
							| 97 | 96 | adantr |  | 
						
							| 98 | 74 77 92 97 | mulge0d |  | 
						
							| 99 | 73 98 | eqbrtrd |  | 
						
							| 100 | 99 | ad4ant14 |  | 
						
							| 101 |  | simpll |  | 
						
							| 102 | 42 | ad2antrr |  | 
						
							| 103 | 15 | ad3antrrr |  | 
						
							| 104 | 42 | adantr |  | 
						
							| 105 | 15 | ad2antrr |  | 
						
							| 106 |  | simpr |  | 
						
							| 107 | 104 105 106 | nltled |  | 
						
							| 108 | 107 | adantr |  | 
						
							| 109 |  | neqne |  | 
						
							| 110 | 109 | adantl |  | 
						
							| 111 | 102 103 108 110 | leneltd |  | 
						
							| 112 | 10 33 | abssubd |  | 
						
							| 113 | 112 | adantr |  | 
						
							| 114 | 1 | ad2antrr |  | 
						
							| 115 | 2 | ad2antrr |  | 
						
							| 116 | 4 | ad2antrr |  | 
						
							| 117 | 5 | ad2antrr |  | 
						
							| 118 | 6 | ad2antrr |  | 
						
							| 119 | 60 | ad2antrr |  | 
						
							| 120 | 47 | adantr |  | 
						
							| 121 | 41 | rexrd |  | 
						
							| 122 | 121 | ad2antlr |  | 
						
							| 123 | 13 | ad2antrr |  | 
						
							| 124 | 15 | ad2antrr |  | 
						
							| 125 |  | simpr |  | 
						
							| 126 | 21 | ad2antrr |  | 
						
							| 127 | 122 123 124 125 126 | eliood |  | 
						
							| 128 | 114 115 116 117 118 119 120 127 | dvbdfbdioolem1 |  | 
						
							| 129 | 128 | simprd |  | 
						
							| 130 | 113 129 | eqbrtrd |  | 
						
							| 131 | 101 111 130 | syl2anc |  | 
						
							| 132 | 100 131 | pm2.61dan |  | 
						
							| 133 | 66 132 | pm2.61dan |  | 
						
							| 134 | 27 35 32 36 133 | letrd |  | 
						
							| 135 | 27 32 26 134 | leadd1dd |  | 
						
							| 136 | 11 | recnd |  | 
						
							| 137 | 26 | recnd |  | 
						
							| 138 | 136 137 | npcand |  | 
						
							| 139 | 138 | eqcomd |  | 
						
							| 140 | 25 | recnd |  | 
						
							| 141 | 6 | recnd |  | 
						
							| 142 | 2 | recnd |  | 
						
							| 143 | 1 | recnd |  | 
						
							| 144 | 142 143 | subcld |  | 
						
							| 145 | 141 144 | mulcld |  | 
						
							| 146 | 140 145 | addcomd |  | 
						
							| 147 | 8 146 | eqtrid |  | 
						
							| 148 | 147 | adantr |  | 
						
							| 149 | 135 139 148 | 3brtr4d |  | 
						
							| 150 | 149 | ralrimiva |  |