Metamath Proof Explorer


Theorem dvcncxp1

Description: Derivative of complex power with respect to first argument on the complex plane. (Contributed by Brendan Leahy, 18-Dec-2018)

Ref Expression
Hypothesis dvcncxp1.d D = −∞ 0
Assertion dvcncxp1 A dx D x A d x = x D A x A 1

Proof

Step Hyp Ref Expression
1 dvcncxp1.d D = −∞ 0
2 cnelprrecn
3 2 a1i A
4 difss −∞ 0
5 1 4 eqsstri D
6 5 sseli x D x
7 1 logdmn0 x D x 0
8 6 7 logcld x D log x
9 8 adantl A x D log x
10 6 7 reccld x D 1 x
11 10 adantl A x D 1 x
12 mulcl A y A y
13 efcl A y e A y
14 12 13 syl A y e A y
15 ovexd A y e A y A V
16 1 dvlog D log D = x D 1 x
17 1 logcn log D : D cn
18 cncff log D : D cn log D : D
19 17 18 mp1i A log D : D
20 19 feqmptd A log D = x D log D x
21 fvres x D log D x = log x
22 21 mpteq2ia x D log D x = x D log x
23 20 22 eqtrdi A log D = x D log x
24 23 oveq2d A D log D = dx D log x d x
25 16 24 syl5reqr A dx D log x d x = x D 1 x
26 simpl A y A
27 efcl x e x
28 27 adantl A x e x
29 simpr A y y
30 1cnd A y 1
31 3 dvmptid A dy y d y = y 1
32 id A A
33 3 29 30 31 32 dvmptcmul A dy A y d y = y A 1
34 mulid1 A A 1 = A
35 34 mpteq2dv A y A 1 = y A
36 33 35 eqtrd A dy A y d y = y A
37 dvef D exp = exp
38 eff exp :
39 38 a1i A exp :
40 39 feqmptd A exp = x e x
41 40 oveq2d A D exp = dx e x d x
42 37 41 40 3eqtr3a A dx e x d x = x e x
43 fveq2 x = A y e x = e A y
44 3 3 12 26 28 28 36 42 43 43 dvmptco A dy e A y d y = y e A y A
45 oveq2 y = log x A y = A log x
46 45 fveq2d y = log x e A y = e A log x
47 46 oveq1d y = log x e A y A = e A log x A
48 3 3 9 11 14 15 25 44 46 47 dvmptco A dx D e A log x d x = x D e A log x A 1 x
49 6 adantl A x D x
50 7 adantl A x D x 0
51 simpl A x D A
52 49 50 51 cxpefd A x D x A = e A log x
53 52 mpteq2dva A x D x A = x D e A log x
54 53 oveq2d A dx D x A d x = dx D e A log x d x
55 1cnd A x D 1
56 49 50 51 55 cxpsubd A x D x A 1 = x A x 1
57 49 cxp1d A x D x 1 = x
58 57 oveq2d A x D x A x 1 = x A x
59 49 51 cxpcld A x D x A
60 59 49 50 divrecd A x D x A x = x A 1 x
61 56 58 60 3eqtrd A x D x A 1 = x A 1 x
62 61 oveq2d A x D A x A 1 = A x A 1 x
63 51 59 11 mul12d A x D A x A 1 x = x A A 1 x
64 59 51 11 mulassd A x D x A A 1 x = x A A 1 x
65 63 64 eqtr4d A x D A x A 1 x = x A A 1 x
66 52 oveq1d A x D x A A = e A log x A
67 66 oveq1d A x D x A A 1 x = e A log x A 1 x
68 62 65 67 3eqtrd A x D A x A 1 = e A log x A 1 x
69 68 mpteq2dva A x D A x A 1 = x D e A log x A 1 x
70 48 54 69 3eqtr4d A dx D x A d x = x D A x A 1