Metamath Proof Explorer


Theorem dvcnvre

Description: The derivative rule for inverse functions. If F is a continuous and differentiable bijective function from X to Y which never has derivative 0 , then ` ``' F is also differentiable, and its derivative is the reciprocal of the derivative of F ` . (Contributed by Mario Carneiro, 24-Feb-2015)

Ref Expression
Hypotheses dvcnvre.f φ F : X cn
dvcnvre.d φ dom F = X
dvcnvre.z φ ¬ 0 ran F
dvcnvre.1 φ F : X 1-1 onto Y
Assertion dvcnvre φ D F -1 = x Y 1 F F -1 x

Proof

Step Hyp Ref Expression
1 dvcnvre.f φ F : X cn
2 dvcnvre.d φ dom F = X
3 dvcnvre.z φ ¬ 0 ran F
4 dvcnvre.1 φ F : X 1-1 onto Y
5 eqid TopOpen fld = TopOpen fld
6 5 tgioo2 topGen ran . = TopOpen fld 𝑡
7 reelprrecn
8 7 a1i φ
9 retop topGen ran . Top
10 f1ofo F : X 1-1 onto Y F : X onto Y
11 forn F : X onto Y ran F = Y
12 4 10 11 3syl φ ran F = Y
13 cncff F : X cn F : X
14 frn F : X ran F
15 1 13 14 3syl φ ran F
16 12 15 eqsstrrd φ Y
17 uniretop = topGen ran .
18 17 ntrss2 topGen ran . Top Y int topGen ran . Y Y
19 9 16 18 sylancr φ int topGen ran . Y Y
20 f1ocnvfv2 F : X 1-1 onto Y x Y F F -1 x = x
21 4 20 sylan φ x Y F F -1 x = x
22 eqid abs 2 = abs 2
23 22 rexmet abs 2 ∞Met
24 dvbsss dom F
25 24 a1i φ dom F
26 2 25 eqsstrrd φ X
27 17 ntrss2 topGen ran . Top X int topGen ran . X X
28 9 26 27 sylancr φ int topGen ran . X X
29 ax-resscn
30 29 a1i φ
31 1 13 syl φ F : X
32 fss F : X F : X
33 31 29 32 sylancl φ F : X
34 30 33 26 6 5 dvbssntr φ dom F int topGen ran . X
35 2 34 eqsstrrd φ X int topGen ran . X
36 28 35 eqssd φ int topGen ran . X = X
37 17 isopn3 topGen ran . Top X X topGen ran . int topGen ran . X = X
38 9 26 37 sylancr φ X topGen ran . int topGen ran . X = X
39 36 38 mpbird φ X topGen ran .
40 f1ocnv F : X 1-1 onto Y F -1 : Y 1-1 onto X
41 f1of F -1 : Y 1-1 onto X F -1 : Y X
42 4 40 41 3syl φ F -1 : Y X
43 42 ffvelrnda φ x Y F -1 x X
44 eqid MetOpen abs 2 = MetOpen abs 2
45 22 44 tgioo topGen ran . = MetOpen abs 2
46 45 mopni2 abs 2 ∞Met X topGen ran . F -1 x X r + F -1 x ball abs 2 r X
47 23 39 43 46 mp3an2ani φ x Y r + F -1 x ball abs 2 r X
48 1 ad2antrr φ x Y r + F -1 x ball abs 2 r X F : X cn
49 2 ad2antrr φ x Y r + F -1 x ball abs 2 r X dom F = X
50 3 ad2antrr φ x Y r + F -1 x ball abs 2 r X ¬ 0 ran F
51 4 ad2antrr φ x Y r + F -1 x ball abs 2 r X F : X 1-1 onto Y
52 43 adantr φ x Y r + F -1 x ball abs 2 r X F -1 x X
53 rphalfcl r + r 2 +
54 53 ad2antrl φ x Y r + F -1 x ball abs 2 r X r 2 +
55 26 ad2antrr φ x Y r + F -1 x ball abs 2 r X X
56 55 52 sseldd φ x Y r + F -1 x ball abs 2 r X F -1 x
57 54 rpred φ x Y r + F -1 x ball abs 2 r X r 2
58 56 57 resubcld φ x Y r + F -1 x ball abs 2 r X F -1 x r 2
59 56 57 readdcld φ x Y r + F -1 x ball abs 2 r X F -1 x + r 2
60 elicc2 F -1 x r 2 F -1 x + r 2 y F -1 x r 2 F -1 x + r 2 y F -1 x r 2 y y F -1 x + r 2
61 58 59 60 syl2anc φ x Y r + F -1 x ball abs 2 r X y F -1 x r 2 F -1 x + r 2 y F -1 x r 2 y y F -1 x + r 2
62 61 biimpa φ x Y r + F -1 x ball abs 2 r X y F -1 x r 2 F -1 x + r 2 y F -1 x r 2 y y F -1 x + r 2
63 62 simp1d φ x Y r + F -1 x ball abs 2 r X y F -1 x r 2 F -1 x + r 2 y
64 56 adantr φ x Y r + F -1 x ball abs 2 r X y F -1 x r 2 F -1 x + r 2 F -1 x
65 simplrl φ x Y r + F -1 x ball abs 2 r X y F -1 x r 2 F -1 x + r 2 r +
66 65 rpred φ x Y r + F -1 x ball abs 2 r X y F -1 x r 2 F -1 x + r 2 r
67 64 66 resubcld φ x Y r + F -1 x ball abs 2 r X y F -1 x r 2 F -1 x + r 2 F -1 x r
68 58 adantr φ x Y r + F -1 x ball abs 2 r X y F -1 x r 2 F -1 x + r 2 F -1 x r 2
69 65 53 syl φ x Y r + F -1 x ball abs 2 r X y F -1 x r 2 F -1 x + r 2 r 2 +
70 69 rpred φ x Y r + F -1 x ball abs 2 r X y F -1 x r 2 F -1 x + r 2 r 2
71 rphalflt r + r 2 < r
72 65 71 syl φ x Y r + F -1 x ball abs 2 r X y F -1 x r 2 F -1 x + r 2 r 2 < r
73 70 66 64 72 ltsub2dd φ x Y r + F -1 x ball abs 2 r X y F -1 x r 2 F -1 x + r 2 F -1 x r < F -1 x r 2
74 62 simp2d φ x Y r + F -1 x ball abs 2 r X y F -1 x r 2 F -1 x + r 2 F -1 x r 2 y
75 67 68 63 73 74 ltletrd φ x Y r + F -1 x ball abs 2 r X y F -1 x r 2 F -1 x + r 2 F -1 x r < y
76 59 adantr φ x Y r + F -1 x ball abs 2 r X y F -1 x r 2 F -1 x + r 2 F -1 x + r 2
77 64 66 readdcld φ x Y r + F -1 x ball abs 2 r X y F -1 x r 2 F -1 x + r 2 F -1 x + r
78 62 simp3d φ x Y r + F -1 x ball abs 2 r X y F -1 x r 2 F -1 x + r 2 y F -1 x + r 2
79 70 66 64 72 ltadd2dd φ x Y r + F -1 x ball abs 2 r X y F -1 x r 2 F -1 x + r 2 F -1 x + r 2 < F -1 x + r
80 63 76 77 78 79 lelttrd φ x Y r + F -1 x ball abs 2 r X y F -1 x r 2 F -1 x + r 2 y < F -1 x + r
81 67 rexrd φ x Y r + F -1 x ball abs 2 r X y F -1 x r 2 F -1 x + r 2 F -1 x r *
82 77 rexrd φ x Y r + F -1 x ball abs 2 r X y F -1 x r 2 F -1 x + r 2 F -1 x + r *
83 elioo2 F -1 x r * F -1 x + r * y F -1 x r F -1 x + r y F -1 x r < y y < F -1 x + r
84 81 82 83 syl2anc φ x Y r + F -1 x ball abs 2 r X y F -1 x r 2 F -1 x + r 2 y F -1 x r F -1 x + r y F -1 x r < y y < F -1 x + r
85 63 75 80 84 mpbir3and φ x Y r + F -1 x ball abs 2 r X y F -1 x r 2 F -1 x + r 2 y F -1 x r F -1 x + r
86 85 ex φ x Y r + F -1 x ball abs 2 r X y F -1 x r 2 F -1 x + r 2 y F -1 x r F -1 x + r
87 86 ssrdv φ x Y r + F -1 x ball abs 2 r X F -1 x r 2 F -1 x + r 2 F -1 x r F -1 x + r
88 rpre r + r
89 88 ad2antrl φ x Y r + F -1 x ball abs 2 r X r
90 22 bl2ioo F -1 x r F -1 x ball abs 2 r = F -1 x r F -1 x + r
91 56 89 90 syl2anc φ x Y r + F -1 x ball abs 2 r X F -1 x ball abs 2 r = F -1 x r F -1 x + r
92 87 91 sseqtrrd φ x Y r + F -1 x ball abs 2 r X F -1 x r 2 F -1 x + r 2 F -1 x ball abs 2 r
93 simprr φ x Y r + F -1 x ball abs 2 r X F -1 x ball abs 2 r X
94 92 93 sstrd φ x Y r + F -1 x ball abs 2 r X F -1 x r 2 F -1 x + r 2 X
95 eqid topGen ran . = topGen ran .
96 eqid TopOpen fld 𝑡 X = TopOpen fld 𝑡 X
97 eqid TopOpen fld 𝑡 Y = TopOpen fld 𝑡 Y
98 48 49 50 51 52 54 94 95 5 96 97 dvcnvrelem2 φ x Y r + F -1 x ball abs 2 r X F F -1 x int topGen ran . Y F -1 TopOpen fld 𝑡 Y CnP TopOpen fld 𝑡 X F F -1 x
99 47 98 rexlimddv φ x Y F F -1 x int topGen ran . Y F -1 TopOpen fld 𝑡 Y CnP TopOpen fld 𝑡 X F F -1 x
100 99 simpld φ x Y F F -1 x int topGen ran . Y
101 21 100 eqeltrrd φ x Y x int topGen ran . Y
102 19 101 eqelssd φ int topGen ran . Y = Y
103 17 isopn3 topGen ran . Top Y Y topGen ran . int topGen ran . Y = Y
104 9 16 103 sylancr φ Y topGen ran . int topGen ran . Y = Y
105 102 104 mpbird φ Y topGen ran .
106 99 simprd φ x Y F -1 TopOpen fld 𝑡 Y CnP TopOpen fld 𝑡 X F F -1 x
107 21 fveq2d φ x Y TopOpen fld 𝑡 Y CnP TopOpen fld 𝑡 X F F -1 x = TopOpen fld 𝑡 Y CnP TopOpen fld 𝑡 X x
108 106 107 eleqtrd φ x Y F -1 TopOpen fld 𝑡 Y CnP TopOpen fld 𝑡 X x
109 108 ralrimiva φ x Y F -1 TopOpen fld 𝑡 Y CnP TopOpen fld 𝑡 X x
110 5 cnfldtopon TopOpen fld TopOn
111 16 29 sstrdi φ Y
112 resttopon TopOpen fld TopOn Y TopOpen fld 𝑡 Y TopOn Y
113 110 111 112 sylancr φ TopOpen fld 𝑡 Y TopOn Y
114 26 29 sstrdi φ X
115 resttopon TopOpen fld TopOn X TopOpen fld 𝑡 X TopOn X
116 110 114 115 sylancr φ TopOpen fld 𝑡 X TopOn X
117 cncnp TopOpen fld 𝑡 Y TopOn Y TopOpen fld 𝑡 X TopOn X F -1 TopOpen fld 𝑡 Y Cn TopOpen fld 𝑡 X F -1 : Y X x Y F -1 TopOpen fld 𝑡 Y CnP TopOpen fld 𝑡 X x
118 113 116 117 syl2anc φ F -1 TopOpen fld 𝑡 Y Cn TopOpen fld 𝑡 X F -1 : Y X x Y F -1 TopOpen fld 𝑡 Y CnP TopOpen fld 𝑡 X x
119 42 109 118 mpbir2and φ F -1 TopOpen fld 𝑡 Y Cn TopOpen fld 𝑡 X
120 5 97 96 cncfcn Y X Y cn X = TopOpen fld 𝑡 Y Cn TopOpen fld 𝑡 X
121 111 114 120 syl2anc φ Y cn X = TopOpen fld 𝑡 Y Cn TopOpen fld 𝑡 X
122 119 121 eleqtrrd φ F -1 : Y cn X
123 5 6 8 105 4 122 2 3 dvcnv φ D F -1 = x Y 1 F F -1 x