Metamath Proof Explorer


Theorem dvhgrp

Description: The full vector space U constructed from a Hilbert lattice K (given a fiducial hyperplane W ) is a group. (Contributed by NM, 19-Oct-2013) (Revised by Mario Carneiro, 24-Jun-2014)

Ref Expression
Hypotheses dvhgrp.b B=BaseK
dvhgrp.h H=LHypK
dvhgrp.t T=LTrnKW
dvhgrp.e E=TEndoKW
dvhgrp.u U=DVecHKW
dvhgrp.d D=ScalarU
dvhgrp.p ˙=+D
dvhgrp.a +˙=+U
dvhgrp.o 0˙=0D
dvhgrp.i I=invgD
Assertion dvhgrp KHLWHUGrp

Proof

Step Hyp Ref Expression
1 dvhgrp.b B=BaseK
2 dvhgrp.h H=LHypK
3 dvhgrp.t T=LTrnKW
4 dvhgrp.e E=TEndoKW
5 dvhgrp.u U=DVecHKW
6 dvhgrp.d D=ScalarU
7 dvhgrp.p ˙=+D
8 dvhgrp.a +˙=+U
9 dvhgrp.o 0˙=0D
10 dvhgrp.i I=invgD
11 eqid BaseU=BaseU
12 2 3 4 5 11 dvhvbase KHLWHBaseU=T×E
13 12 eqcomd KHLWHT×E=BaseU
14 8 a1i KHLWH+˙=+U
15 2 3 4 5 6 7 8 dvhvaddcl KHLWHfT×EgT×Ef+˙gT×E
16 15 3impb KHLWHfT×EgT×Ef+˙gT×E
17 2 3 4 5 6 7 8 dvhvaddass KHLWHfT×EgT×EhT×Ef+˙g+˙h=f+˙g+˙h
18 1 2 3 idltrn KHLWHIBT
19 eqid EDRingKW=EDRingKW
20 2 19 5 6 dvhsca KHLWHD=EDRingKW
21 2 19 erngdv KHLWHEDRingKWDivRing
22 20 21 eqeltrd KHLWHDDivRing
23 drnggrp DDivRingDGrp
24 22 23 syl KHLWHDGrp
25 eqid BaseD=BaseD
26 25 9 grpidcl DGrp0˙BaseD
27 24 26 syl KHLWH0˙BaseD
28 2 4 5 6 25 dvhbase KHLWHBaseD=E
29 27 28 eleqtrd KHLWH0˙E
30 opelxpi IBT0˙EIB0˙T×E
31 18 29 30 syl2anc KHLWHIB0˙T×E
32 simpl KHLWHfT×EKHLWH
33 18 adantr KHLWHfT×EIBT
34 29 adantr KHLWHfT×E0˙E
35 xp1st fT×E1stfT
36 35 adantl KHLWHfT×E1stfT
37 xp2nd fT×E2ndfE
38 37 adantl KHLWHfT×E2ndfE
39 2 3 4 5 6 8 7 dvhopvadd KHLWHIBT0˙E1stfT2ndfEIB0˙+˙1stf2ndf=IB1stf0˙˙2ndf
40 32 33 34 36 38 39 syl122anc KHLWHfT×EIB0˙+˙1stf2ndf=IB1stf0˙˙2ndf
41 1 2 3 ltrn1o KHLWH1stfT1stf:B1-1 ontoB
42 36 41 syldan KHLWHfT×E1stf:B1-1 ontoB
43 f1of 1stf:B1-1 ontoB1stf:BB
44 fcoi2 1stf:BBIB1stf=1stf
45 42 43 44 3syl KHLWHfT×EIB1stf=1stf
46 24 adantr KHLWHfT×EDGrp
47 28 adantr KHLWHfT×EBaseD=E
48 38 47 eleqtrrd KHLWHfT×E2ndfBaseD
49 25 7 9 grplid DGrp2ndfBaseD0˙˙2ndf=2ndf
50 46 48 49 syl2anc KHLWHfT×E0˙˙2ndf=2ndf
51 45 50 opeq12d KHLWHfT×EIB1stf0˙˙2ndf=1stf2ndf
52 40 51 eqtrd KHLWHfT×EIB0˙+˙1stf2ndf=1stf2ndf
53 1st2nd2 fT×Ef=1stf2ndf
54 53 adantl KHLWHfT×Ef=1stf2ndf
55 54 oveq2d KHLWHfT×EIB0˙+˙f=IB0˙+˙1stf2ndf
56 52 55 54 3eqtr4d KHLWHfT×EIB0˙+˙f=f
57 2 3 ltrncnv KHLWH1stfT1stf-1T
58 36 57 syldan KHLWHfT×E1stf-1T
59 25 10 grpinvcl DGrp2ndfBaseDI2ndfBaseD
60 46 48 59 syl2anc KHLWHfT×EI2ndfBaseD
61 60 47 eleqtrd KHLWHfT×EI2ndfE
62 opelxpi 1stf-1TI2ndfE1stf-1I2ndfT×E
63 58 61 62 syl2anc KHLWHfT×E1stf-1I2ndfT×E
64 54 oveq2d KHLWHfT×E1stf-1I2ndf+˙f=1stf-1I2ndf+˙1stf2ndf
65 2 3 4 5 6 8 7 dvhopvadd KHLWH1stf-1TI2ndfE1stfT2ndfE1stf-1I2ndf+˙1stf2ndf=1stf-11stfI2ndf˙2ndf
66 32 58 61 36 38 65 syl122anc KHLWHfT×E1stf-1I2ndf+˙1stf2ndf=1stf-11stfI2ndf˙2ndf
67 f1ococnv1 1stf:B1-1 ontoB1stf-11stf=IB
68 42 67 syl KHLWHfT×E1stf-11stf=IB
69 25 7 9 10 grplinv DGrp2ndfBaseDI2ndf˙2ndf=0˙
70 46 48 69 syl2anc KHLWHfT×EI2ndf˙2ndf=0˙
71 68 70 opeq12d KHLWHfT×E1stf-11stfI2ndf˙2ndf=IB0˙
72 66 71 eqtrd KHLWHfT×E1stf-1I2ndf+˙1stf2ndf=IB0˙
73 64 72 eqtrd KHLWHfT×E1stf-1I2ndf+˙f=IB0˙
74 13 14 16 17 31 56 63 73 isgrpd KHLWHUGrp