Metamath Proof Explorer


Theorem dvhgrp

Description: The full vector space U constructed from a Hilbert lattice K (given a fiducial hyperplane W ) is a group. (Contributed by NM, 19-Oct-2013) (Revised by Mario Carneiro, 24-Jun-2014)

Ref Expression
Hypotheses dvhgrp.b B = Base K
dvhgrp.h H = LHyp K
dvhgrp.t T = LTrn K W
dvhgrp.e E = TEndo K W
dvhgrp.u U = DVecH K W
dvhgrp.d D = Scalar U
dvhgrp.p ˙ = + D
dvhgrp.a + ˙ = + U
dvhgrp.o 0 ˙ = 0 D
dvhgrp.i I = inv g D
Assertion dvhgrp K HL W H U Grp

Proof

Step Hyp Ref Expression
1 dvhgrp.b B = Base K
2 dvhgrp.h H = LHyp K
3 dvhgrp.t T = LTrn K W
4 dvhgrp.e E = TEndo K W
5 dvhgrp.u U = DVecH K W
6 dvhgrp.d D = Scalar U
7 dvhgrp.p ˙ = + D
8 dvhgrp.a + ˙ = + U
9 dvhgrp.o 0 ˙ = 0 D
10 dvhgrp.i I = inv g D
11 eqid Base U = Base U
12 2 3 4 5 11 dvhvbase K HL W H Base U = T × E
13 12 eqcomd K HL W H T × E = Base U
14 8 a1i K HL W H + ˙ = + U
15 2 3 4 5 6 7 8 dvhvaddcl K HL W H f T × E g T × E f + ˙ g T × E
16 15 3impb K HL W H f T × E g T × E f + ˙ g T × E
17 2 3 4 5 6 7 8 dvhvaddass K HL W H f T × E g T × E h T × E f + ˙ g + ˙ h = f + ˙ g + ˙ h
18 1 2 3 idltrn K HL W H I B T
19 eqid EDRing K W = EDRing K W
20 2 19 5 6 dvhsca K HL W H D = EDRing K W
21 2 19 erngdv K HL W H EDRing K W DivRing
22 20 21 eqeltrd K HL W H D DivRing
23 drnggrp D DivRing D Grp
24 22 23 syl K HL W H D Grp
25 eqid Base D = Base D
26 25 9 grpidcl D Grp 0 ˙ Base D
27 24 26 syl K HL W H 0 ˙ Base D
28 2 4 5 6 25 dvhbase K HL W H Base D = E
29 27 28 eleqtrd K HL W H 0 ˙ E
30 opelxpi I B T 0 ˙ E I B 0 ˙ T × E
31 18 29 30 syl2anc K HL W H I B 0 ˙ T × E
32 simpl K HL W H f T × E K HL W H
33 18 adantr K HL W H f T × E I B T
34 29 adantr K HL W H f T × E 0 ˙ E
35 xp1st f T × E 1 st f T
36 35 adantl K HL W H f T × E 1 st f T
37 xp2nd f T × E 2 nd f E
38 37 adantl K HL W H f T × E 2 nd f E
39 2 3 4 5 6 8 7 dvhopvadd K HL W H I B T 0 ˙ E 1 st f T 2 nd f E I B 0 ˙ + ˙ 1 st f 2 nd f = I B 1 st f 0 ˙ ˙ 2 nd f
40 32 33 34 36 38 39 syl122anc K HL W H f T × E I B 0 ˙ + ˙ 1 st f 2 nd f = I B 1 st f 0 ˙ ˙ 2 nd f
41 1 2 3 ltrn1o K HL W H 1 st f T 1 st f : B 1-1 onto B
42 36 41 syldan K HL W H f T × E 1 st f : B 1-1 onto B
43 f1of 1 st f : B 1-1 onto B 1 st f : B B
44 fcoi2 1 st f : B B I B 1 st f = 1 st f
45 42 43 44 3syl K HL W H f T × E I B 1 st f = 1 st f
46 24 adantr K HL W H f T × E D Grp
47 28 adantr K HL W H f T × E Base D = E
48 38 47 eleqtrrd K HL W H f T × E 2 nd f Base D
49 25 7 9 grplid D Grp 2 nd f Base D 0 ˙ ˙ 2 nd f = 2 nd f
50 46 48 49 syl2anc K HL W H f T × E 0 ˙ ˙ 2 nd f = 2 nd f
51 45 50 opeq12d K HL W H f T × E I B 1 st f 0 ˙ ˙ 2 nd f = 1 st f 2 nd f
52 40 51 eqtrd K HL W H f T × E I B 0 ˙ + ˙ 1 st f 2 nd f = 1 st f 2 nd f
53 1st2nd2 f T × E f = 1 st f 2 nd f
54 53 adantl K HL W H f T × E f = 1 st f 2 nd f
55 54 oveq2d K HL W H f T × E I B 0 ˙ + ˙ f = I B 0 ˙ + ˙ 1 st f 2 nd f
56 52 55 54 3eqtr4d K HL W H f T × E I B 0 ˙ + ˙ f = f
57 2 3 ltrncnv K HL W H 1 st f T 1 st f -1 T
58 36 57 syldan K HL W H f T × E 1 st f -1 T
59 25 10 grpinvcl D Grp 2 nd f Base D I 2 nd f Base D
60 46 48 59 syl2anc K HL W H f T × E I 2 nd f Base D
61 60 47 eleqtrd K HL W H f T × E I 2 nd f E
62 opelxpi 1 st f -1 T I 2 nd f E 1 st f -1 I 2 nd f T × E
63 58 61 62 syl2anc K HL W H f T × E 1 st f -1 I 2 nd f T × E
64 54 oveq2d K HL W H f T × E 1 st f -1 I 2 nd f + ˙ f = 1 st f -1 I 2 nd f + ˙ 1 st f 2 nd f
65 2 3 4 5 6 8 7 dvhopvadd K HL W H 1 st f -1 T I 2 nd f E 1 st f T 2 nd f E 1 st f -1 I 2 nd f + ˙ 1 st f 2 nd f = 1 st f -1 1 st f I 2 nd f ˙ 2 nd f
66 32 58 61 36 38 65 syl122anc K HL W H f T × E 1 st f -1 I 2 nd f + ˙ 1 st f 2 nd f = 1 st f -1 1 st f I 2 nd f ˙ 2 nd f
67 f1ococnv1 1 st f : B 1-1 onto B 1 st f -1 1 st f = I B
68 42 67 syl K HL W H f T × E 1 st f -1 1 st f = I B
69 25 7 9 10 grplinv D Grp 2 nd f Base D I 2 nd f ˙ 2 nd f = 0 ˙
70 46 48 69 syl2anc K HL W H f T × E I 2 nd f ˙ 2 nd f = 0 ˙
71 68 70 opeq12d K HL W H f T × E 1 st f -1 1 st f I 2 nd f ˙ 2 nd f = I B 0 ˙
72 66 71 eqtrd K HL W H f T × E 1 st f -1 I 2 nd f + ˙ 1 st f 2 nd f = I B 0 ˙
73 64 72 eqtrd K HL W H f T × E 1 st f -1 I 2 nd f + ˙ f = I B 0 ˙
74 13 14 16 17 31 56 63 73 isgrpd K HL W H U Grp