Metamath Proof Explorer


Theorem dvreslem

Description: Lemma for dvres . (Contributed by Mario Carneiro, 8-Aug-2014) (Revised by Mario Carneiro, 28-Dec-2016) Commute the consequent and shorten proof. (Revised by Peter Mazsa, 2-Oct-2022)

Ref Expression
Hypotheses dvres.k K=TopOpenfld
dvres.t T=K𝑡S
dvres.g G=zAxFzFxzx
dvres.s φS
dvres.f φF:A
dvres.a φAS
dvres.b φBS
dvres.y φy
Assertion dvreslem φxFBSyxintTBxFSy

Proof

Step Hyp Ref Expression
1 dvres.k K=TopOpenfld
2 dvres.t T=K𝑡S
3 dvres.g G=zAxFzFxzx
4 dvres.s φS
5 dvres.f φF:A
6 dvres.a φAS
7 dvres.b φBS
8 dvres.y φy
9 difss ABxAB
10 inss2 ABB
11 9 10 sstri ABxB
12 simpr φxintTABzABxzABx
13 11 12 sselid φxintTABzABxzB
14 13 fvresd φxintTABzABxFBz=Fz
15 1 cnfldtop KTop
16 cnex V
17 ssexg SVSV
18 4 16 17 sylancl φSV
19 resttop KTopSVK𝑡STop
20 15 18 19 sylancr φK𝑡STop
21 2 20 eqeltrid φTTop
22 inss1 ABA
23 22 6 sstrid φABS
24 1 cnfldtopon KTopOn
25 resttopon KTopOnSK𝑡STopOnS
26 24 4 25 sylancr φK𝑡STopOnS
27 2 26 eqeltrid φTTopOnS
28 toponuni TTopOnSS=T
29 27 28 syl φS=T
30 23 29 sseqtrd φABT
31 eqid T=T
32 31 ntrss2 TTopABTintTABAB
33 21 30 32 syl2anc φintTABAB
34 33 10 sstrdi φintTABB
35 34 sselda φxintTABxB
36 35 fvresd φxintTABFBx=Fx
37 36 adantr φxintTABzABxFBx=Fx
38 14 37 oveq12d φxintTABzABxFBzFBx=FzFx
39 38 oveq1d φxintTABzABxFBzFBxzx=FzFxzx
40 39 mpteq2dva φxintTABzABxFBzFBxzx=zABxFzFxzx
41 3 reseq1i GABx=zAxFzFxzxABx
42 ssdif ABAABxAx
43 resmpt ABxAxzAxFzFxzxABx=zABxFzFxzx
44 22 42 43 mp2b zAxFzFxzxABx=zABxFzFxzx
45 41 44 eqtri GABx=zABxFzFxzx
46 40 45 eqtr4di φxintTABzABxFBzFBxzx=GABx
47 46 oveq1d φxintTABzABxFBzFBxzxlimx=GABxlimx
48 5 adantr φxintTABF:A
49 6 4 sstrd φA
50 49 adantr φxintTABA
51 33 22 sstrdi φintTABA
52 51 sselda φxintTABxA
53 48 50 52 dvlem φxintTABzAxFzFxzx
54 53 3 fmptd φxintTABG:Ax
55 22 42 mp1i φxintTABABxAx
56 difss AxA
57 56 50 sstrid φxintTABAx
58 eqid K𝑡Axx=K𝑡Axx
59 difssd φTAT
60 30 59 unssd φABTAT
61 ssun1 ABABTA
62 61 a1i φABABTA
63 31 ntrss TTopABTATABABTAintTABintTABTA
64 21 60 62 63 syl3anc φintTABintTABTA
65 64 51 ssind φintTABintTABTAA
66 6 29 sseqtrd φAT
67 22 a1i φABA
68 eqid T𝑡A=T𝑡A
69 31 68 restntr TTopATABAintT𝑡AAB=intTABTAA
70 21 66 67 69 syl3anc φintT𝑡AAB=intTABTAA
71 2 oveq1i T𝑡A=K𝑡S𝑡A
72 15 a1i φKTop
73 restabs KTopASSVK𝑡S𝑡A=K𝑡A
74 72 6 18 73 syl3anc φK𝑡S𝑡A=K𝑡A
75 71 74 eqtrid φT𝑡A=K𝑡A
76 75 fveq2d φintT𝑡A=intK𝑡A
77 76 fveq1d φintT𝑡AAB=intK𝑡AAB
78 70 77 eqtr3d φintTABTAA=intK𝑡AAB
79 65 78 sseqtrd φintTABintK𝑡AAB
80 79 sselda φxintTABxintK𝑡AAB
81 undif1 Axx=Ax
82 33 sselda φxintTABxAB
83 82 snssd φxintTABxAB
84 83 22 sstrdi φxintTABxA
85 ssequn2 xAAx=A
86 84 85 sylib φxintTABAx=A
87 81 86 eqtrid φxintTABAxx=A
88 87 oveq2d φxintTABK𝑡Axx=K𝑡A
89 88 fveq2d φxintTABintK𝑡Axx=intK𝑡A
90 undif1 ABxx=ABx
91 ssequn2 xABABx=AB
92 83 91 sylib φxintTABABx=AB
93 90 92 eqtrid φxintTABABxx=AB
94 89 93 fveq12d φxintTABintK𝑡AxxABxx=intK𝑡AAB
95 80 94 eleqtrrd φxintTABxintK𝑡AxxABxx
96 54 55 57 1 58 95 limcres φxintTABGABxlimx=Glimx
97 47 96 eqtrd φxintTABzABxFBzFBxzxlimx=Glimx
98 97 eleq2d φxintTAByzABxFBzFBxzxlimxyGlimx
99 98 pm5.32da φxintTAByzABxFBzFBxzxlimxxintTAByGlimx
100 7 29 sseqtrd φBT
101 31 ntrin TTopATBTintTAB=intTAintTB
102 21 66 100 101 syl3anc φintTAB=intTAintTB
103 102 eleq2d φxintTABxintTAintTB
104 elin xintTAintTBxintTAxintTB
105 103 104 bitrdi φxintTABxintTAxintTB
106 105 anbi1d φxintTAByGlimxxintTAxintTByGlimx
107 99 106 bitrd φxintTAByzABxFBzFBxzxlimxxintTAxintTByGlimx
108 an32 xintTAxintTByGlimxxintTAyGlimxxintTB
109 107 108 bitrdi φxintTAByzABxFBzFBxzxlimxxintTAyGlimxxintTB
110 eqid zABxFBzFBxzx=zABxFBzFBxzx
111 fresin F:AFB:AB
112 5 111 syl φFB:AB
113 2 1 110 4 112 23 eldv φxFBSyxintTAByzABxFBzFBxzxlimx
114 2 1 3 4 5 6 eldv φxFSyxintTAyGlimx
115 114 anbi1cd φxintTBxFSyxintTAyGlimxxintTB
116 109 113 115 3bitr4d φxFBSyxintTBxFSy