Database
BASIC REAL AND COMPLEX ANALYSIS
Integrals
Lebesgue measure
dyadmbllem
Next ⟩
dyadmbl
Metamath Proof Explorer
Ascii
Unicode
Theorem
dyadmbllem
Description:
Lemma for
dyadmbl
.
(Contributed by
Mario Carneiro
, 26-Mar-2015)
Ref
Expression
Hypotheses
dyadmbl.1
⊢
F
=
x
∈
ℤ
,
y
∈
ℕ
0
⟼
x
2
y
x
+
1
2
y
dyadmbl.2
⊢
G
=
z
∈
A
|
∀
w
∈
A
.
z
⊆
.
w
→
z
=
w
dyadmbl.3
⊢
φ
→
A
⊆
ran
F
Assertion
dyadmbllem
⊢
φ
→
⋃
.
A
=
⋃
.
G
Proof
Step
Hyp
Ref
Expression
1
dyadmbl.1
⊢
F
=
x
∈
ℤ
,
y
∈
ℕ
0
⟼
x
2
y
x
+
1
2
y
2
dyadmbl.2
⊢
G
=
z
∈
A
|
∀
w
∈
A
.
z
⊆
.
w
→
z
=
w
3
dyadmbl.3
⊢
φ
→
A
⊆
ran
F
4
eluni2
⊢
a
∈
⋃
.
A
↔
∃
i
∈
.
A
a
∈
i
5
iccf
⊢
.
:
ℝ
*
×
ℝ
*
⟶
𝒫
ℝ
*
6
ffn
⊢
.
:
ℝ
*
×
ℝ
*
⟶
𝒫
ℝ
*
→
.
Fn
ℝ
*
×
ℝ
*
7
5
6
ax-mp
⊢
.
Fn
ℝ
*
×
ℝ
*
8
1
dyadf
⊢
F
:
ℤ
×
ℕ
0
⟶
≤
∩
ℝ
2
9
frn
⊢
F
:
ℤ
×
ℕ
0
⟶
≤
∩
ℝ
2
→
ran
F
⊆
≤
∩
ℝ
2
10
8
9
ax-mp
⊢
ran
F
⊆
≤
∩
ℝ
2
11
inss2
⊢
≤
∩
ℝ
2
⊆
ℝ
2
12
rexpssxrxp
⊢
ℝ
2
⊆
ℝ
*
×
ℝ
*
13
11
12
sstri
⊢
≤
∩
ℝ
2
⊆
ℝ
*
×
ℝ
*
14
10
13
sstri
⊢
ran
F
⊆
ℝ
*
×
ℝ
*
15
3
14
sstrdi
⊢
φ
→
A
⊆
ℝ
*
×
ℝ
*
16
eleq2
⊢
i
=
.
t
→
a
∈
i
↔
a
∈
.
t
17
16
rexima
⊢
.
Fn
ℝ
*
×
ℝ
*
∧
A
⊆
ℝ
*
×
ℝ
*
→
∃
i
∈
.
A
a
∈
i
↔
∃
t
∈
A
a
∈
.
t
18
7
15
17
sylancr
⊢
φ
→
∃
i
∈
.
A
a
∈
i
↔
∃
t
∈
A
a
∈
.
t
19
ssrab2
⊢
a
∈
A
|
.
t
⊆
.
a
⊆
A
20
3
adantr
⊢
φ
∧
t
∈
A
∧
a
∈
.
t
→
A
⊆
ran
F
21
19
20
sstrid
⊢
φ
∧
t
∈
A
∧
a
∈
.
t
→
a
∈
A
|
.
t
⊆
.
a
⊆
ran
F
22
simprl
⊢
φ
∧
t
∈
A
∧
a
∈
.
t
→
t
∈
A
23
ssid
⊢
.
t
⊆
.
t
24
fveq2
⊢
a
=
t
→
.
a
=
.
t
25
24
sseq2d
⊢
a
=
t
→
.
t
⊆
.
a
↔
.
t
⊆
.
t
26
25
rspcev
⊢
t
∈
A
∧
.
t
⊆
.
t
→
∃
a
∈
A
.
t
⊆
.
a
27
22
23
26
sylancl
⊢
φ
∧
t
∈
A
∧
a
∈
.
t
→
∃
a
∈
A
.
t
⊆
.
a
28
rabn0
⊢
a
∈
A
|
.
t
⊆
.
a
≠
∅
↔
∃
a
∈
A
.
t
⊆
.
a
29
27
28
sylibr
⊢
φ
∧
t
∈
A
∧
a
∈
.
t
→
a
∈
A
|
.
t
⊆
.
a
≠
∅
30
1
dyadmax
⊢
a
∈
A
|
.
t
⊆
.
a
⊆
ran
F
∧
a
∈
A
|
.
t
⊆
.
a
≠
∅
→
∃
m
∈
a
∈
A
|
.
t
⊆
.
a
∀
w
∈
a
∈
A
|
.
t
⊆
.
a
.
m
⊆
.
w
→
m
=
w
31
21
29
30
syl2anc
⊢
φ
∧
t
∈
A
∧
a
∈
.
t
→
∃
m
∈
a
∈
A
|
.
t
⊆
.
a
∀
w
∈
a
∈
A
|
.
t
⊆
.
a
.
m
⊆
.
w
→
m
=
w
32
fveq2
⊢
a
=
m
→
.
a
=
.
m
33
32
sseq2d
⊢
a
=
m
→
.
t
⊆
.
a
↔
.
t
⊆
.
m
34
33
elrab
⊢
m
∈
a
∈
A
|
.
t
⊆
.
a
↔
m
∈
A
∧
.
t
⊆
.
m
35
simprlr
⊢
φ
∧
t
∈
A
∧
a
∈
.
t
∧
m
∈
A
∧
.
t
⊆
.
m
∧
∀
w
∈
a
∈
A
|
.
t
⊆
.
a
.
m
⊆
.
w
→
m
=
w
→
.
t
⊆
.
m
36
simplrr
⊢
φ
∧
t
∈
A
∧
a
∈
.
t
∧
m
∈
A
∧
.
t
⊆
.
m
∧
∀
w
∈
a
∈
A
|
.
t
⊆
.
a
.
m
⊆
.
w
→
m
=
w
→
a
∈
.
t
37
35
36
sseldd
⊢
φ
∧
t
∈
A
∧
a
∈
.
t
∧
m
∈
A
∧
.
t
⊆
.
m
∧
∀
w
∈
a
∈
A
|
.
t
⊆
.
a
.
m
⊆
.
w
→
m
=
w
→
a
∈
.
m
38
simprll
⊢
φ
∧
t
∈
A
∧
a
∈
.
t
∧
m
∈
A
∧
.
t
⊆
.
m
∧
∀
w
∈
a
∈
A
|
.
t
⊆
.
a
.
m
⊆
.
w
→
m
=
w
→
m
∈
A
39
fveq2
⊢
a
=
w
→
.
a
=
.
w
40
39
sseq2d
⊢
a
=
w
→
.
t
⊆
.
a
↔
.
t
⊆
.
w
41
40
elrab
⊢
w
∈
a
∈
A
|
.
t
⊆
.
a
↔
w
∈
A
∧
.
t
⊆
.
w
42
41
imbi1i
⊢
w
∈
a
∈
A
|
.
t
⊆
.
a
→
.
m
⊆
.
w
→
m
=
w
↔
w
∈
A
∧
.
t
⊆
.
w
→
.
m
⊆
.
w
→
m
=
w
43
impexp
⊢
w
∈
A
∧
.
t
⊆
.
w
→
.
m
⊆
.
w
→
m
=
w
↔
w
∈
A
→
.
t
⊆
.
w
→
.
m
⊆
.
w
→
m
=
w
44
42
43
bitri
⊢
w
∈
a
∈
A
|
.
t
⊆
.
a
→
.
m
⊆
.
w
→
m
=
w
↔
w
∈
A
→
.
t
⊆
.
w
→
.
m
⊆
.
w
→
m
=
w
45
impexp
⊢
.
t
⊆
.
w
∧
.
m
⊆
.
w
→
m
=
w
↔
.
t
⊆
.
w
→
.
m
⊆
.
w
→
m
=
w
46
sstr2
⊢
.
t
⊆
.
m
→
.
m
⊆
.
w
→
.
t
⊆
.
w
47
46
ad2antll
⊢
φ
∧
t
∈
A
∧
a
∈
.
t
∧
m
∈
A
∧
.
t
⊆
.
m
→
.
m
⊆
.
w
→
.
t
⊆
.
w
48
47
ancrd
⊢
φ
∧
t
∈
A
∧
a
∈
.
t
∧
m
∈
A
∧
.
t
⊆
.
m
→
.
m
⊆
.
w
→
.
t
⊆
.
w
∧
.
m
⊆
.
w
49
48
imim1d
⊢
φ
∧
t
∈
A
∧
a
∈
.
t
∧
m
∈
A
∧
.
t
⊆
.
m
→
.
t
⊆
.
w
∧
.
m
⊆
.
w
→
m
=
w
→
.
m
⊆
.
w
→
m
=
w
50
45
49
biimtrrid
⊢
φ
∧
t
∈
A
∧
a
∈
.
t
∧
m
∈
A
∧
.
t
⊆
.
m
→
.
t
⊆
.
w
→
.
m
⊆
.
w
→
m
=
w
→
.
m
⊆
.
w
→
m
=
w
51
50
imim2d
⊢
φ
∧
t
∈
A
∧
a
∈
.
t
∧
m
∈
A
∧
.
t
⊆
.
m
→
w
∈
A
→
.
t
⊆
.
w
→
.
m
⊆
.
w
→
m
=
w
→
w
∈
A
→
.
m
⊆
.
w
→
m
=
w
52
44
51
biimtrid
⊢
φ
∧
t
∈
A
∧
a
∈
.
t
∧
m
∈
A
∧
.
t
⊆
.
m
→
w
∈
a
∈
A
|
.
t
⊆
.
a
→
.
m
⊆
.
w
→
m
=
w
→
w
∈
A
→
.
m
⊆
.
w
→
m
=
w
53
52
ralimdv2
⊢
φ
∧
t
∈
A
∧
a
∈
.
t
∧
m
∈
A
∧
.
t
⊆
.
m
→
∀
w
∈
a
∈
A
|
.
t
⊆
.
a
.
m
⊆
.
w
→
m
=
w
→
∀
w
∈
A
.
m
⊆
.
w
→
m
=
w
54
53
impr
⊢
φ
∧
t
∈
A
∧
a
∈
.
t
∧
m
∈
A
∧
.
t
⊆
.
m
∧
∀
w
∈
a
∈
A
|
.
t
⊆
.
a
.
m
⊆
.
w
→
m
=
w
→
∀
w
∈
A
.
m
⊆
.
w
→
m
=
w
55
fveq2
⊢
z
=
m
→
.
z
=
.
m
56
55
sseq1d
⊢
z
=
m
→
.
z
⊆
.
w
↔
.
m
⊆
.
w
57
equequ1
⊢
z
=
m
→
z
=
w
↔
m
=
w
58
56
57
imbi12d
⊢
z
=
m
→
.
z
⊆
.
w
→
z
=
w
↔
.
m
⊆
.
w
→
m
=
w
59
58
ralbidv
⊢
z
=
m
→
∀
w
∈
A
.
z
⊆
.
w
→
z
=
w
↔
∀
w
∈
A
.
m
⊆
.
w
→
m
=
w
60
59
2
elrab2
⊢
m
∈
G
↔
m
∈
A
∧
∀
w
∈
A
.
m
⊆
.
w
→
m
=
w
61
38
54
60
sylanbrc
⊢
φ
∧
t
∈
A
∧
a
∈
.
t
∧
m
∈
A
∧
.
t
⊆
.
m
∧
∀
w
∈
a
∈
A
|
.
t
⊆
.
a
.
m
⊆
.
w
→
m
=
w
→
m
∈
G
62
ffun
⊢
.
:
ℝ
*
×
ℝ
*
⟶
𝒫
ℝ
*
→
Fun
.
63
5
62
ax-mp
⊢
Fun
.
64
2
ssrab3
⊢
G
⊆
A
65
64
15
sstrid
⊢
φ
→
G
⊆
ℝ
*
×
ℝ
*
66
5
fdmi
⊢
dom
.
=
ℝ
*
×
ℝ
*
67
65
66
sseqtrrdi
⊢
φ
→
G
⊆
dom
.
68
67
ad2antrr
⊢
φ
∧
t
∈
A
∧
a
∈
.
t
∧
m
∈
A
∧
.
t
⊆
.
m
∧
∀
w
∈
a
∈
A
|
.
t
⊆
.
a
.
m
⊆
.
w
→
m
=
w
→
G
⊆
dom
.
69
funfvima2
⊢
Fun
.
∧
G
⊆
dom
.
→
m
∈
G
→
.
m
∈
.
G
70
63
68
69
sylancr
⊢
φ
∧
t
∈
A
∧
a
∈
.
t
∧
m
∈
A
∧
.
t
⊆
.
m
∧
∀
w
∈
a
∈
A
|
.
t
⊆
.
a
.
m
⊆
.
w
→
m
=
w
→
m
∈
G
→
.
m
∈
.
G
71
61
70
mpd
⊢
φ
∧
t
∈
A
∧
a
∈
.
t
∧
m
∈
A
∧
.
t
⊆
.
m
∧
∀
w
∈
a
∈
A
|
.
t
⊆
.
a
.
m
⊆
.
w
→
m
=
w
→
.
m
∈
.
G
72
elunii
⊢
a
∈
.
m
∧
.
m
∈
.
G
→
a
∈
⋃
.
G
73
37
71
72
syl2anc
⊢
φ
∧
t
∈
A
∧
a
∈
.
t
∧
m
∈
A
∧
.
t
⊆
.
m
∧
∀
w
∈
a
∈
A
|
.
t
⊆
.
a
.
m
⊆
.
w
→
m
=
w
→
a
∈
⋃
.
G
74
73
exp32
⊢
φ
∧
t
∈
A
∧
a
∈
.
t
→
m
∈
A
∧
.
t
⊆
.
m
→
∀
w
∈
a
∈
A
|
.
t
⊆
.
a
.
m
⊆
.
w
→
m
=
w
→
a
∈
⋃
.
G
75
34
74
biimtrid
⊢
φ
∧
t
∈
A
∧
a
∈
.
t
→
m
∈
a
∈
A
|
.
t
⊆
.
a
→
∀
w
∈
a
∈
A
|
.
t
⊆
.
a
.
m
⊆
.
w
→
m
=
w
→
a
∈
⋃
.
G
76
75
rexlimdv
⊢
φ
∧
t
∈
A
∧
a
∈
.
t
→
∃
m
∈
a
∈
A
|
.
t
⊆
.
a
∀
w
∈
a
∈
A
|
.
t
⊆
.
a
.
m
⊆
.
w
→
m
=
w
→
a
∈
⋃
.
G
77
31
76
mpd
⊢
φ
∧
t
∈
A
∧
a
∈
.
t
→
a
∈
⋃
.
G
78
77
rexlimdvaa
⊢
φ
→
∃
t
∈
A
a
∈
.
t
→
a
∈
⋃
.
G
79
18
78
sylbid
⊢
φ
→
∃
i
∈
.
A
a
∈
i
→
a
∈
⋃
.
G
80
4
79
biimtrid
⊢
φ
→
a
∈
⋃
.
A
→
a
∈
⋃
.
G
81
80
ssrdv
⊢
φ
→
⋃
.
A
⊆
⋃
.
G
82
imass2
⊢
G
⊆
A
→
.
G
⊆
.
A
83
64
82
ax-mp
⊢
.
G
⊆
.
A
84
uniss
⊢
.
G
⊆
.
A
→
⋃
.
G
⊆
⋃
.
A
85
83
84
mp1i
⊢
φ
→
⋃
.
G
⊆
⋃
.
A
86
81
85
eqssd
⊢
φ
→
⋃
.
A
=
⋃
.
G