Metamath Proof Explorer


Theorem dyadmbllem

Description: Lemma for dyadmbl . (Contributed by Mario Carneiro, 26-Mar-2015)

Ref Expression
Hypotheses dyadmbl.1 F = x , y 0 x 2 y x + 1 2 y
dyadmbl.2 G = z A | w A . z . w z = w
dyadmbl.3 φ A ran F
Assertion dyadmbllem φ . A = . G

Proof

Step Hyp Ref Expression
1 dyadmbl.1 F = x , y 0 x 2 y x + 1 2 y
2 dyadmbl.2 G = z A | w A . z . w z = w
3 dyadmbl.3 φ A ran F
4 eluni2 a . A i . A a i
5 iccf . : * × * 𝒫 *
6 ffn . : * × * 𝒫 * . Fn * × *
7 5 6 ax-mp . Fn * × *
8 1 dyadf F : × 0 2
9 frn F : × 0 2 ran F 2
10 8 9 ax-mp ran F 2
11 inss2 2 2
12 rexpssxrxp 2 * × *
13 11 12 sstri 2 * × *
14 10 13 sstri ran F * × *
15 3 14 sstrdi φ A * × *
16 eleq2 i = . t a i a . t
17 16 rexima . Fn * × * A * × * i . A a i t A a . t
18 7 15 17 sylancr φ i . A a i t A a . t
19 ssrab2 a A | . t . a A
20 3 adantr φ t A a . t A ran F
21 19 20 sstrid φ t A a . t a A | . t . a ran F
22 simprl φ t A a . t t A
23 ssid . t . t
24 fveq2 a = t . a = . t
25 24 sseq2d a = t . t . a . t . t
26 25 rspcev t A . t . t a A . t . a
27 22 23 26 sylancl φ t A a . t a A . t . a
28 rabn0 a A | . t . a a A . t . a
29 27 28 sylibr φ t A a . t a A | . t . a
30 1 dyadmax a A | . t . a ran F a A | . t . a m a A | . t . a w a A | . t . a . m . w m = w
31 21 29 30 syl2anc φ t A a . t m a A | . t . a w a A | . t . a . m . w m = w
32 fveq2 a = m . a = . m
33 32 sseq2d a = m . t . a . t . m
34 33 elrab m a A | . t . a m A . t . m
35 simprlr φ t A a . t m A . t . m w a A | . t . a . m . w m = w . t . m
36 simplrr φ t A a . t m A . t . m w a A | . t . a . m . w m = w a . t
37 35 36 sseldd φ t A a . t m A . t . m w a A | . t . a . m . w m = w a . m
38 simprll φ t A a . t m A . t . m w a A | . t . a . m . w m = w m A
39 fveq2 a = w . a = . w
40 39 sseq2d a = w . t . a . t . w
41 40 elrab w a A | . t . a w A . t . w
42 41 imbi1i w a A | . t . a . m . w m = w w A . t . w . m . w m = w
43 impexp w A . t . w . m . w m = w w A . t . w . m . w m = w
44 42 43 bitri w a A | . t . a . m . w m = w w A . t . w . m . w m = w
45 impexp . t . w . m . w m = w . t . w . m . w m = w
46 sstr2 . t . m . m . w . t . w
47 46 ad2antll φ t A a . t m A . t . m . m . w . t . w
48 47 ancrd φ t A a . t m A . t . m . m . w . t . w . m . w
49 48 imim1d φ t A a . t m A . t . m . t . w . m . w m = w . m . w m = w
50 45 49 syl5bir φ t A a . t m A . t . m . t . w . m . w m = w . m . w m = w
51 50 imim2d φ t A a . t m A . t . m w A . t . w . m . w m = w w A . m . w m = w
52 44 51 syl5bi φ t A a . t m A . t . m w a A | . t . a . m . w m = w w A . m . w m = w
53 52 ralimdv2 φ t A a . t m A . t . m w a A | . t . a . m . w m = w w A . m . w m = w
54 53 impr φ t A a . t m A . t . m w a A | . t . a . m . w m = w w A . m . w m = w
55 fveq2 z = m . z = . m
56 55 sseq1d z = m . z . w . m . w
57 equequ1 z = m z = w m = w
58 56 57 imbi12d z = m . z . w z = w . m . w m = w
59 58 ralbidv z = m w A . z . w z = w w A . m . w m = w
60 59 2 elrab2 m G m A w A . m . w m = w
61 38 54 60 sylanbrc φ t A a . t m A . t . m w a A | . t . a . m . w m = w m G
62 ffun . : * × * 𝒫 * Fun .
63 5 62 ax-mp Fun .
64 2 ssrab3 G A
65 64 15 sstrid φ G * × *
66 5 fdmi dom . = * × *
67 65 66 sseqtrrdi φ G dom .
68 67 ad2antrr φ t A a . t m A . t . m w a A | . t . a . m . w m = w G dom .
69 funfvima2 Fun . G dom . m G . m . G
70 63 68 69 sylancr φ t A a . t m A . t . m w a A | . t . a . m . w m = w m G . m . G
71 61 70 mpd φ t A a . t m A . t . m w a A | . t . a . m . w m = w . m . G
72 elunii a . m . m . G a . G
73 37 71 72 syl2anc φ t A a . t m A . t . m w a A | . t . a . m . w m = w a . G
74 73 exp32 φ t A a . t m A . t . m w a A | . t . a . m . w m = w a . G
75 34 74 syl5bi φ t A a . t m a A | . t . a w a A | . t . a . m . w m = w a . G
76 75 rexlimdv φ t A a . t m a A | . t . a w a A | . t . a . m . w m = w a . G
77 31 76 mpd φ t A a . t a . G
78 77 rexlimdvaa φ t A a . t a . G
79 18 78 sylbid φ i . A a i a . G
80 4 79 syl5bi φ a . A a . G
81 80 ssrdv φ . A . G
82 imass2 G A . G . A
83 64 82 ax-mp . G . A
84 uniss . G . A . G . A
85 83 84 mp1i φ . G . A
86 81 85 eqssd φ . A = . G