Metamath Proof Explorer


Theorem dyadmbllem

Description: Lemma for dyadmbl . (Contributed by Mario Carneiro, 26-Mar-2015)

Ref Expression
Hypotheses dyadmbl.1 F=x,y0x2yx+12y
dyadmbl.2 G=zA|wA.z.wz=w
dyadmbl.3 φAranF
Assertion dyadmbllem φ.A=.G

Proof

Step Hyp Ref Expression
1 dyadmbl.1 F=x,y0x2yx+12y
2 dyadmbl.2 G=zA|wA.z.wz=w
3 dyadmbl.3 φAranF
4 eluni2 a.Ai.Aai
5 iccf .:*×*𝒫*
6 ffn .:*×*𝒫*.Fn*×*
7 5 6 ax-mp .Fn*×*
8 1 dyadf F:×02
9 frn F:×02ranF2
10 8 9 ax-mp ranF2
11 inss2 22
12 rexpssxrxp 2*×*
13 11 12 sstri 2*×*
14 10 13 sstri ranF*×*
15 3 14 sstrdi φA*×*
16 eleq2 i=.taia.t
17 16 rexima .Fn*×*A*×*i.AaitAa.t
18 7 15 17 sylancr φi.AaitAa.t
19 ssrab2 aA|.t.aA
20 3 adantr φtAa.tAranF
21 19 20 sstrid φtAa.taA|.t.aranF
22 simprl φtAa.ttA
23 ssid .t.t
24 fveq2 a=t.a=.t
25 24 sseq2d a=t.t.a.t.t
26 25 rspcev tA.t.taA.t.a
27 22 23 26 sylancl φtAa.taA.t.a
28 rabn0 aA|.t.aaA.t.a
29 27 28 sylibr φtAa.taA|.t.a
30 1 dyadmax aA|.t.aranFaA|.t.amaA|.t.awaA|.t.a.m.wm=w
31 21 29 30 syl2anc φtAa.tmaA|.t.awaA|.t.a.m.wm=w
32 fveq2 a=m.a=.m
33 32 sseq2d a=m.t.a.t.m
34 33 elrab maA|.t.amA.t.m
35 simprlr φtAa.tmA.t.mwaA|.t.a.m.wm=w.t.m
36 simplrr φtAa.tmA.t.mwaA|.t.a.m.wm=wa.t
37 35 36 sseldd φtAa.tmA.t.mwaA|.t.a.m.wm=wa.m
38 simprll φtAa.tmA.t.mwaA|.t.a.m.wm=wmA
39 fveq2 a=w.a=.w
40 39 sseq2d a=w.t.a.t.w
41 40 elrab waA|.t.awA.t.w
42 41 imbi1i waA|.t.a.m.wm=wwA.t.w.m.wm=w
43 impexp wA.t.w.m.wm=wwA.t.w.m.wm=w
44 42 43 bitri waA|.t.a.m.wm=wwA.t.w.m.wm=w
45 impexp .t.w.m.wm=w.t.w.m.wm=w
46 sstr2 .t.m.m.w.t.w
47 46 ad2antll φtAa.tmA.t.m.m.w.t.w
48 47 ancrd φtAa.tmA.t.m.m.w.t.w.m.w
49 48 imim1d φtAa.tmA.t.m.t.w.m.wm=w.m.wm=w
50 45 49 biimtrrid φtAa.tmA.t.m.t.w.m.wm=w.m.wm=w
51 50 imim2d φtAa.tmA.t.mwA.t.w.m.wm=wwA.m.wm=w
52 44 51 biimtrid φtAa.tmA.t.mwaA|.t.a.m.wm=wwA.m.wm=w
53 52 ralimdv2 φtAa.tmA.t.mwaA|.t.a.m.wm=wwA.m.wm=w
54 53 impr φtAa.tmA.t.mwaA|.t.a.m.wm=wwA.m.wm=w
55 fveq2 z=m.z=.m
56 55 sseq1d z=m.z.w.m.w
57 equequ1 z=mz=wm=w
58 56 57 imbi12d z=m.z.wz=w.m.wm=w
59 58 ralbidv z=mwA.z.wz=wwA.m.wm=w
60 59 2 elrab2 mGmAwA.m.wm=w
61 38 54 60 sylanbrc φtAa.tmA.t.mwaA|.t.a.m.wm=wmG
62 ffun .:*×*𝒫*Fun.
63 5 62 ax-mp Fun.
64 2 ssrab3 GA
65 64 15 sstrid φG*×*
66 5 fdmi dom.=*×*
67 65 66 sseqtrrdi φGdom.
68 67 ad2antrr φtAa.tmA.t.mwaA|.t.a.m.wm=wGdom.
69 funfvima2 Fun.Gdom.mG.m.G
70 63 68 69 sylancr φtAa.tmA.t.mwaA|.t.a.m.wm=wmG.m.G
71 61 70 mpd φtAa.tmA.t.mwaA|.t.a.m.wm=w.m.G
72 elunii a.m.m.Ga.G
73 37 71 72 syl2anc φtAa.tmA.t.mwaA|.t.a.m.wm=wa.G
74 73 exp32 φtAa.tmA.t.mwaA|.t.a.m.wm=wa.G
75 34 74 biimtrid φtAa.tmaA|.t.awaA|.t.a.m.wm=wa.G
76 75 rexlimdv φtAa.tmaA|.t.awaA|.t.a.m.wm=wa.G
77 31 76 mpd φtAa.ta.G
78 77 rexlimdvaa φtAa.ta.G
79 18 78 sylbid φi.Aaia.G
80 4 79 biimtrid φa.Aa.G
81 80 ssrdv φ.A.G
82 imass2 GA.G.A
83 64 82 ax-mp .G.A
84 uniss .G.A.G.A
85 83 84 mp1i φ.G.A
86 81 85 eqssd φ.A=.G