| Step |
Hyp |
Ref |
Expression |
| 1 |
|
dyadmbl.1 |
|
| 2 |
|
dyadmbl.2 |
|
| 3 |
|
dyadmbl.3 |
|
| 4 |
|
eluni2 |
|
| 5 |
|
iccf |
|
| 6 |
|
ffn |
|
| 7 |
5 6
|
ax-mp |
|
| 8 |
1
|
dyadf |
|
| 9 |
|
frn |
|
| 10 |
8 9
|
ax-mp |
|
| 11 |
|
inss2 |
|
| 12 |
|
rexpssxrxp |
|
| 13 |
11 12
|
sstri |
|
| 14 |
10 13
|
sstri |
|
| 15 |
3 14
|
sstrdi |
|
| 16 |
|
eleq2 |
|
| 17 |
16
|
rexima |
|
| 18 |
7 15 17
|
sylancr |
|
| 19 |
|
ssrab2 |
|
| 20 |
3
|
adantr |
|
| 21 |
19 20
|
sstrid |
|
| 22 |
|
simprl |
|
| 23 |
|
ssid |
|
| 24 |
|
fveq2 |
|
| 25 |
24
|
sseq2d |
|
| 26 |
25
|
rspcev |
|
| 27 |
22 23 26
|
sylancl |
|
| 28 |
|
rabn0 |
|
| 29 |
27 28
|
sylibr |
|
| 30 |
1
|
dyadmax |
|
| 31 |
21 29 30
|
syl2anc |
|
| 32 |
|
fveq2 |
|
| 33 |
32
|
sseq2d |
|
| 34 |
33
|
elrab |
|
| 35 |
|
simprlr |
|
| 36 |
|
simplrr |
|
| 37 |
35 36
|
sseldd |
|
| 38 |
|
simprll |
|
| 39 |
|
fveq2 |
|
| 40 |
39
|
sseq2d |
|
| 41 |
40
|
elrab |
|
| 42 |
41
|
imbi1i |
|
| 43 |
|
impexp |
|
| 44 |
42 43
|
bitri |
|
| 45 |
|
impexp |
|
| 46 |
|
sstr2 |
|
| 47 |
46
|
ad2antll |
|
| 48 |
47
|
ancrd |
|
| 49 |
48
|
imim1d |
|
| 50 |
45 49
|
biimtrrid |
|
| 51 |
50
|
imim2d |
|
| 52 |
44 51
|
biimtrid |
|
| 53 |
52
|
ralimdv2 |
|
| 54 |
53
|
impr |
|
| 55 |
|
fveq2 |
|
| 56 |
55
|
sseq1d |
|
| 57 |
|
equequ1 |
|
| 58 |
56 57
|
imbi12d |
|
| 59 |
58
|
ralbidv |
|
| 60 |
59 2
|
elrab2 |
|
| 61 |
38 54 60
|
sylanbrc |
|
| 62 |
|
ffun |
|
| 63 |
5 62
|
ax-mp |
|
| 64 |
2
|
ssrab3 |
|
| 65 |
64 15
|
sstrid |
|
| 66 |
5
|
fdmi |
|
| 67 |
65 66
|
sseqtrrdi |
|
| 68 |
67
|
ad2antrr |
|
| 69 |
|
funfvima2 |
|
| 70 |
63 68 69
|
sylancr |
|
| 71 |
61 70
|
mpd |
|
| 72 |
|
elunii |
|
| 73 |
37 71 72
|
syl2anc |
|
| 74 |
73
|
exp32 |
|
| 75 |
34 74
|
biimtrid |
|
| 76 |
75
|
rexlimdv |
|
| 77 |
31 76
|
mpd |
|
| 78 |
77
|
rexlimdvaa |
|
| 79 |
18 78
|
sylbid |
|
| 80 |
4 79
|
biimtrid |
|
| 81 |
80
|
ssrdv |
|
| 82 |
|
imass2 |
|
| 83 |
64 82
|
ax-mp |
|
| 84 |
|
uniss |
|
| 85 |
83 84
|
mp1i |
|
| 86 |
81 85
|
eqssd |
|