| Step | Hyp | Ref | Expression | 
						
							| 1 |  | efadd.1 |  | 
						
							| 2 |  | efadd.2 |  | 
						
							| 3 |  | efadd.3 |  | 
						
							| 4 |  | efadd.4 |  | 
						
							| 5 |  | efadd.5 |  | 
						
							| 6 | 4 5 | addcld |  | 
						
							| 7 | 3 | efcvg |  | 
						
							| 8 | 6 7 | syl |  | 
						
							| 9 | 1 | eftval |  | 
						
							| 10 | 9 | adantl |  | 
						
							| 11 |  | absexp |  | 
						
							| 12 | 4 11 | sylan |  | 
						
							| 13 |  | faccl |  | 
						
							| 14 | 13 | adantl |  | 
						
							| 15 |  | nnre |  | 
						
							| 16 |  | nnnn0 |  | 
						
							| 17 | 16 | nn0ge0d |  | 
						
							| 18 | 15 17 | absidd |  | 
						
							| 19 | 14 18 | syl |  | 
						
							| 20 | 12 19 | oveq12d |  | 
						
							| 21 |  | expcl |  | 
						
							| 22 | 4 21 | sylan |  | 
						
							| 23 | 14 | nncnd |  | 
						
							| 24 | 14 | nnne0d |  | 
						
							| 25 | 22 23 24 | absdivd |  | 
						
							| 26 |  | eqid |  | 
						
							| 27 | 26 | eftval |  | 
						
							| 28 | 27 | adantl |  | 
						
							| 29 | 20 25 28 | 3eqtr4rd |  | 
						
							| 30 |  | eftcl |  | 
						
							| 31 | 4 30 | sylan |  | 
						
							| 32 | 2 | eftval |  | 
						
							| 33 | 32 | adantl |  | 
						
							| 34 |  | eftcl |  | 
						
							| 35 | 5 34 | sylan |  | 
						
							| 36 | 3 | eftval |  | 
						
							| 37 | 36 | adantl |  | 
						
							| 38 | 4 | adantr |  | 
						
							| 39 | 5 | adantr |  | 
						
							| 40 |  | simpr |  | 
						
							| 41 |  | binom |  | 
						
							| 42 | 38 39 40 41 | syl3anc |  | 
						
							| 43 | 42 | oveq1d |  | 
						
							| 44 |  | fzfid |  | 
						
							| 45 |  | faccl |  | 
						
							| 46 | 45 | adantl |  | 
						
							| 47 | 46 | nncnd |  | 
						
							| 48 |  | bccl2 |  | 
						
							| 49 | 48 | adantl |  | 
						
							| 50 | 49 | nncnd |  | 
						
							| 51 | 4 | ad2antrr |  | 
						
							| 52 |  | fznn0sub |  | 
						
							| 53 | 52 | adantl |  | 
						
							| 54 | 51 53 | expcld |  | 
						
							| 55 | 5 | ad2antrr |  | 
						
							| 56 |  | elfznn0 |  | 
						
							| 57 | 56 | adantl |  | 
						
							| 58 | 55 57 | expcld |  | 
						
							| 59 | 54 58 | mulcld |  | 
						
							| 60 | 50 59 | mulcld |  | 
						
							| 61 | 46 | nnne0d |  | 
						
							| 62 | 44 47 60 61 | fsumdivc |  | 
						
							| 63 | 51 57 | expcld |  | 
						
							| 64 | 57 13 | syl |  | 
						
							| 65 | 64 | nncnd |  | 
						
							| 66 | 64 | nnne0d |  | 
						
							| 67 | 63 65 66 | divcld |  | 
						
							| 68 | 2 | eftval |  | 
						
							| 69 | 53 68 | syl |  | 
						
							| 70 | 55 53 | expcld |  | 
						
							| 71 |  | faccl |  | 
						
							| 72 | 53 71 | syl |  | 
						
							| 73 | 72 | nncnd |  | 
						
							| 74 | 72 | nnne0d |  | 
						
							| 75 | 70 73 74 | divcld |  | 
						
							| 76 | 69 75 | eqeltrd |  | 
						
							| 77 | 67 76 | mulcld |  | 
						
							| 78 |  | oveq2 |  | 
						
							| 79 |  | fveq2 |  | 
						
							| 80 | 78 79 | oveq12d |  | 
						
							| 81 |  | oveq2 |  | 
						
							| 82 | 81 | fveq2d |  | 
						
							| 83 | 80 82 | oveq12d |  | 
						
							| 84 | 77 83 | fsumrev2 |  | 
						
							| 85 | 2 | eftval |  | 
						
							| 86 | 57 85 | syl |  | 
						
							| 87 | 86 | oveq2d |  | 
						
							| 88 | 72 64 | nnmulcld |  | 
						
							| 89 | 88 | nncnd |  | 
						
							| 90 | 88 | nnne0d |  | 
						
							| 91 | 59 89 90 | divrec2d |  | 
						
							| 92 | 54 73 58 65 74 66 | divmuldivd |  | 
						
							| 93 |  | bcval2 |  | 
						
							| 94 | 93 | adantl |  | 
						
							| 95 | 94 | oveq1d |  | 
						
							| 96 | 47 | adantr |  | 
						
							| 97 | 61 | adantr |  | 
						
							| 98 | 96 89 96 90 97 | divdiv32d |  | 
						
							| 99 | 96 97 | dividd |  | 
						
							| 100 | 99 | oveq1d |  | 
						
							| 101 | 98 100 | eqtrd |  | 
						
							| 102 | 95 101 | eqtrd |  | 
						
							| 103 | 102 | oveq1d |  | 
						
							| 104 | 91 92 103 | 3eqtr4rd |  | 
						
							| 105 | 87 104 | eqtr4d |  | 
						
							| 106 |  | nn0cn |  | 
						
							| 107 | 106 | ad2antlr |  | 
						
							| 108 | 107 | addlidd |  | 
						
							| 109 | 108 | oveq1d |  | 
						
							| 110 | 109 | oveq2d |  | 
						
							| 111 | 109 | fveq2d |  | 
						
							| 112 | 110 111 | oveq12d |  | 
						
							| 113 | 109 | oveq2d |  | 
						
							| 114 |  | nn0cn |  | 
						
							| 115 | 57 114 | syl |  | 
						
							| 116 | 107 115 | nncand |  | 
						
							| 117 | 113 116 | eqtrd |  | 
						
							| 118 | 117 | fveq2d |  | 
						
							| 119 | 112 118 | oveq12d |  | 
						
							| 120 | 50 59 96 97 | div23d |  | 
						
							| 121 | 105 119 120 | 3eqtr4rd |  | 
						
							| 122 | 121 | sumeq2dv |  | 
						
							| 123 |  | oveq2 |  | 
						
							| 124 | 123 | oveq2d |  | 
						
							| 125 | 123 | fveq2d |  | 
						
							| 126 | 124 125 | oveq12d |  | 
						
							| 127 | 123 | oveq2d |  | 
						
							| 128 | 127 | fveq2d |  | 
						
							| 129 | 126 128 | oveq12d |  | 
						
							| 130 | 129 | cbvsumv |  | 
						
							| 131 | 122 130 | eqtrdi |  | 
						
							| 132 | 84 131 | eqtr4d |  | 
						
							| 133 | 62 132 | eqtr4d |  | 
						
							| 134 | 43 133 | eqtrd |  | 
						
							| 135 | 37 134 | eqtrd |  | 
						
							| 136 | 4 | abscld |  | 
						
							| 137 | 136 | recnd |  | 
						
							| 138 | 26 | efcllem |  | 
						
							| 139 | 137 138 | syl |  | 
						
							| 140 | 2 | efcllem |  | 
						
							| 141 | 5 140 | syl |  | 
						
							| 142 | 10 29 31 33 35 135 139 141 | mertens |  | 
						
							| 143 |  | efval |  | 
						
							| 144 | 4 143 | syl |  | 
						
							| 145 |  | efval |  | 
						
							| 146 | 5 145 | syl |  | 
						
							| 147 | 144 146 | oveq12d |  | 
						
							| 148 | 142 147 | breqtrrd |  | 
						
							| 149 |  | climuni |  | 
						
							| 150 | 8 148 149 | syl2anc |  |