Metamath Proof Explorer


Theorem efaddlem

Description: Lemma for efadd (exponential function addition law). (Contributed by Mario Carneiro, 29-Apr-2014)

Ref Expression
Hypotheses efadd.1 F=n0Ann!
efadd.2 G=n0Bnn!
efadd.3 H=n0A+Bnn!
efadd.4 φA
efadd.5 φB
Assertion efaddlem φeA+B=eAeB

Proof

Step Hyp Ref Expression
1 efadd.1 F=n0Ann!
2 efadd.2 G=n0Bnn!
3 efadd.3 H=n0A+Bnn!
4 efadd.4 φA
5 efadd.5 φB
6 4 5 addcld φA+B
7 3 efcvg A+Bseq0+HeA+B
8 6 7 syl φseq0+HeA+B
9 1 eftval j0Fj=Ajj!
10 9 adantl φj0Fj=Ajj!
11 absexp Aj0Aj=Aj
12 4 11 sylan φj0Aj=Aj
13 faccl j0j!
14 13 adantl φj0j!
15 nnre j!j!
16 nnnn0 j!j!0
17 16 nn0ge0d j!0j!
18 15 17 absidd j!j!=j!
19 14 18 syl φj0j!=j!
20 12 19 oveq12d φj0Ajj!=Ajj!
21 expcl Aj0Aj
22 4 21 sylan φj0Aj
23 14 nncnd φj0j!
24 14 nnne0d φj0j!0
25 22 23 24 absdivd φj0Ajj!=Ajj!
26 eqid n0Ann!=n0Ann!
27 26 eftval j0n0Ann!j=Ajj!
28 27 adantl φj0n0Ann!j=Ajj!
29 20 25 28 3eqtr4rd φj0n0Ann!j=Ajj!
30 eftcl Aj0Ajj!
31 4 30 sylan φj0Ajj!
32 2 eftval k0Gk=Bkk!
33 32 adantl φk0Gk=Bkk!
34 eftcl Bk0Bkk!
35 5 34 sylan φk0Bkk!
36 3 eftval k0Hk=A+Bkk!
37 36 adantl φk0Hk=A+Bkk!
38 4 adantr φk0A
39 5 adantr φk0B
40 simpr φk0k0
41 binom ABk0A+Bk=j=0k(kj)AkjBj
42 38 39 40 41 syl3anc φk0A+Bk=j=0k(kj)AkjBj
43 42 oveq1d φk0A+Bkk!=j=0k(kj)AkjBjk!
44 fzfid φk00kFin
45 faccl k0k!
46 45 adantl φk0k!
47 46 nncnd φk0k!
48 bccl2 j0k(kj)
49 48 adantl φk0j0k(kj)
50 49 nncnd φk0j0k(kj)
51 4 ad2antrr φk0j0kA
52 fznn0sub j0kkj0
53 52 adantl φk0j0kkj0
54 51 53 expcld φk0j0kAkj
55 5 ad2antrr φk0j0kB
56 elfznn0 j0kj0
57 56 adantl φk0j0kj0
58 55 57 expcld φk0j0kBj
59 54 58 mulcld φk0j0kAkjBj
60 50 59 mulcld φk0j0k(kj)AkjBj
61 46 nnne0d φk0k!0
62 44 47 60 61 fsumdivc φk0j=0k(kj)AkjBjk!=j=0k(kj)AkjBjk!
63 51 57 expcld φk0j0kAj
64 57 13 syl φk0j0kj!
65 64 nncnd φk0j0kj!
66 64 nnne0d φk0j0kj!0
67 63 65 66 divcld φk0j0kAjj!
68 2 eftval kj0Gkj=Bkjkj!
69 53 68 syl φk0j0kGkj=Bkjkj!
70 55 53 expcld φk0j0kBkj
71 faccl kj0kj!
72 53 71 syl φk0j0kkj!
73 72 nncnd φk0j0kkj!
74 72 nnne0d φk0j0kkj!0
75 70 73 74 divcld φk0j0kBkjkj!
76 69 75 eqeltrd φk0j0kGkj
77 67 76 mulcld φk0j0kAjj!Gkj
78 oveq2 j=0+k-mAj=A0+k-m
79 fveq2 j=0+k-mj!=0+k-m!
80 78 79 oveq12d j=0+k-mAjj!=A0+k-m0+k-m!
81 oveq2 j=0+k-mkj=k0+k-m
82 81 fveq2d j=0+k-mGkj=Gk0+k-m
83 80 82 oveq12d j=0+k-mAjj!Gkj=A0+k-m0+k-m!Gk0+k-m
84 77 83 fsumrev2 φk0j=0kAjj!Gkj=m=0kA0+k-m0+k-m!Gk0+k-m
85 2 eftval j0Gj=Bjj!
86 57 85 syl φk0j0kGj=Bjj!
87 86 oveq2d φk0j0kAkjkj!Gj=Akjkj!Bjj!
88 72 64 nnmulcld φk0j0kkj!j!
89 88 nncnd φk0j0kkj!j!
90 88 nnne0d φk0j0kkj!j!0
91 59 89 90 divrec2d φk0j0kAkjBjkj!j!=1kj!j!AkjBj
92 54 73 58 65 74 66 divmuldivd φk0j0kAkjkj!Bjj!=AkjBjkj!j!
93 bcval2 j0k(kj)=k!kj!j!
94 93 adantl φk0j0k(kj)=k!kj!j!
95 94 oveq1d φk0j0k(kj)k!=k!kj!j!k!
96 47 adantr φk0j0kk!
97 61 adantr φk0j0kk!0
98 96 89 96 90 97 divdiv32d φk0j0kk!kj!j!k!=k!k!kj!j!
99 96 97 dividd φk0j0kk!k!=1
100 99 oveq1d φk0j0kk!k!kj!j!=1kj!j!
101 98 100 eqtrd φk0j0kk!kj!j!k!=1kj!j!
102 95 101 eqtrd φk0j0k(kj)k!=1kj!j!
103 102 oveq1d φk0j0k(kj)k!AkjBj=1kj!j!AkjBj
104 91 92 103 3eqtr4rd φk0j0k(kj)k!AkjBj=Akjkj!Bjj!
105 87 104 eqtr4d φk0j0kAkjkj!Gj=(kj)k!AkjBj
106 nn0cn k0k
107 106 ad2antlr φk0j0kk
108 107 addlidd φk0j0k0+k=k
109 108 oveq1d φk0j0k0+k-j=kj
110 109 oveq2d φk0j0kA0+k-j=Akj
111 109 fveq2d φk0j0k0+k-j!=kj!
112 110 111 oveq12d φk0j0kA0+k-j0+k-j!=Akjkj!
113 109 oveq2d φk0j0kk0+k-j=kkj
114 nn0cn j0j
115 57 114 syl φk0j0kj
116 107 115 nncand φk0j0kkkj=j
117 113 116 eqtrd φk0j0kk0+k-j=j
118 117 fveq2d φk0j0kGk0+k-j=Gj
119 112 118 oveq12d φk0j0kA0+k-j0+k-j!Gk0+k-j=Akjkj!Gj
120 50 59 96 97 div23d φk0j0k(kj)AkjBjk!=(kj)k!AkjBj
121 105 119 120 3eqtr4rd φk0j0k(kj)AkjBjk!=A0+k-j0+k-j!Gk0+k-j
122 121 sumeq2dv φk0j=0k(kj)AkjBjk!=j=0kA0+k-j0+k-j!Gk0+k-j
123 oveq2 j=m0+k-j=0+k-m
124 123 oveq2d j=mA0+k-j=A0+k-m
125 123 fveq2d j=m0+k-j!=0+k-m!
126 124 125 oveq12d j=mA0+k-j0+k-j!=A0+k-m0+k-m!
127 123 oveq2d j=mk0+k-j=k0+k-m
128 127 fveq2d j=mGk0+k-j=Gk0+k-m
129 126 128 oveq12d j=mA0+k-j0+k-j!Gk0+k-j=A0+k-m0+k-m!Gk0+k-m
130 129 cbvsumv j=0kA0+k-j0+k-j!Gk0+k-j=m=0kA0+k-m0+k-m!Gk0+k-m
131 122 130 eqtrdi φk0j=0k(kj)AkjBjk!=m=0kA0+k-m0+k-m!Gk0+k-m
132 84 131 eqtr4d φk0j=0kAjj!Gkj=j=0k(kj)AkjBjk!
133 62 132 eqtr4d φk0j=0k(kj)AkjBjk!=j=0kAjj!Gkj
134 43 133 eqtrd φk0A+Bkk!=j=0kAjj!Gkj
135 37 134 eqtrd φk0Hk=j=0kAjj!Gkj
136 4 abscld φA
137 136 recnd φA
138 26 efcllem Aseq0+n0Ann!dom
139 137 138 syl φseq0+n0Ann!dom
140 2 efcllem Bseq0+Gdom
141 5 140 syl φseq0+Gdom
142 10 29 31 33 35 135 139 141 mertens φseq0+Hj0Ajj!k0Bkk!
143 efval AeA=j0Ajj!
144 4 143 syl φeA=j0Ajj!
145 efval BeB=k0Bkk!
146 5 145 syl φeB=k0Bkk!
147 144 146 oveq12d φeAeB=j0Ajj!k0Bkk!
148 142 147 breqtrrd φseq0+HeAeB
149 climuni seq0+HeA+Bseq0+HeAeBeA+B=eAeB
150 8 148 149 syl2anc φeA+B=eAeB