Metamath Proof Explorer


Theorem efgredlemc

Description: The reduced word that forms the base of the sequence in efgsval is uniquely determined, given the ending representation. (Contributed by Mario Carneiro, 1-Oct-2015) (Proof shortened by AV, 15-Oct-2022)

Ref Expression
Hypotheses efgval.w W=IWordI×2𝑜
efgval.r ˙=~FGI
efgval2.m M=yI,z2𝑜y1𝑜z
efgval2.t T=vWn0v,wI×2𝑜vsplicenn⟨“wMw”⟩
efgred.d D=WxWranTx
efgred.s S=mtWordW|t0Dk1..^ttkranTtk1mm1
efgredlem.1 φadomSbdomSSa<SASa=Sba0=b0
efgredlem.2 φAdomS
efgredlem.3 φBdomS
efgredlem.4 φSA=SB
efgredlem.5 φ¬A0=B0
efgredlemb.k K=A-1-1
efgredlemb.l L=B-1-1
efgredlemb.p φP0AK
efgredlemb.q φQ0BL
efgredlemb.u φUI×2𝑜
efgredlemb.v φVI×2𝑜
efgredlemb.6 φSA=PTAKU
efgredlemb.7 φSB=QTBLV
efgredlemb.8 φ¬AK=BL
Assertion efgredlemc φPQA0=B0

Proof

Step Hyp Ref Expression
1 efgval.w W=IWordI×2𝑜
2 efgval.r ˙=~FGI
3 efgval2.m M=yI,z2𝑜y1𝑜z
4 efgval2.t T=vWn0v,wI×2𝑜vsplicenn⟨“wMw”⟩
5 efgred.d D=WxWranTx
6 efgred.s S=mtWordW|t0Dk1..^ttkranTtk1mm1
7 efgredlem.1 φadomSbdomSSa<SASa=Sba0=b0
8 efgredlem.2 φAdomS
9 efgredlem.3 φBdomS
10 efgredlem.4 φSA=SB
11 efgredlem.5 φ¬A0=B0
12 efgredlemb.k K=A-1-1
13 efgredlemb.l L=B-1-1
14 efgredlemb.p φP0AK
15 efgredlemb.q φQ0BL
16 efgredlemb.u φUI×2𝑜
17 efgredlemb.v φVI×2𝑜
18 efgredlemb.6 φSA=PTAKU
19 efgredlemb.7 φSB=QTBLV
20 efgredlemb.8 φ¬AK=BL
21 uzp1 PQP=QPQ+1
22 fviss IWordI×2𝑜WordI×2𝑜
23 1 22 eqsstri WWordI×2𝑜
24 1 2 3 4 5 6 efgsdm AdomSAWordWA0Di1..^AAiranTAi1
25 24 simp1bi AdomSAWordW
26 8 25 syl φAWordW
27 26 eldifad φAWordW
28 wrdf AWordWA:0..^AW
29 27 28 syl φA:0..^AW
30 fzossfz 0..^A10A1
31 1 2 3 4 5 6 7 8 9 10 11 efgredlema φA1B1
32 31 simpld φA1
33 fzo0end A1A-1-10..^A1
34 32 33 syl φA-1-10..^A1
35 12 34 eqeltrid φK0..^A1
36 30 35 sselid φK0A1
37 lencl AWordWA0
38 27 37 syl φA0
39 38 nn0zd φA
40 fzoval A0..^A=0A1
41 39 40 syl φ0..^A=0A1
42 36 41 eleqtrrd φK0..^A
43 29 42 ffvelcdmd φAKW
44 23 43 sselid φAKWordI×2𝑜
45 lencl AKWordI×2𝑜AK0
46 44 45 syl φAK0
47 nn0uz 0=0
48 46 47 eleqtrdi φAK0
49 eluzfz2 AK0AK0AK
50 48 49 syl φAK0AK
51 ccatpfx AKWordI×2𝑜P0AKAK0AKAKprefixP++AKsubstrPAK=AKprefixAK
52 44 14 50 51 syl3anc φAKprefixP++AKsubstrPAK=AKprefixAK
53 pfxid AKWordI×2𝑜AKprefixAK=AK
54 44 53 syl φAKprefixAK=AK
55 52 54 eqtrd φAKprefixP++AKsubstrPAK=AK
56 1 2 3 4 5 6 efgsdm BdomSBWordWB0Di1..^BBiranTBi1
57 56 simp1bi BdomSBWordW
58 9 57 syl φBWordW
59 58 eldifad φBWordW
60 wrdf BWordWB:0..^BW
61 59 60 syl φB:0..^BW
62 fzossfz 0..^B10B1
63 31 simprd φB1
64 fzo0end B1B-1-10..^B1
65 63 64 syl φB-1-10..^B1
66 13 65 eqeltrid φL0..^B1
67 62 66 sselid φL0B1
68 lencl BWordWB0
69 59 68 syl φB0
70 69 nn0zd φB
71 fzoval B0..^B=0B1
72 70 71 syl φ0..^B=0B1
73 67 72 eleqtrrd φL0..^B
74 61 73 ffvelcdmd φBLW
75 23 74 sselid φBLWordI×2𝑜
76 lencl BLWordI×2𝑜BL0
77 75 76 syl φBL0
78 77 47 eleqtrdi φBL0
79 eluzfz2 BL0BL0BL
80 78 79 syl φBL0BL
81 ccatpfx BLWordI×2𝑜Q0BLBL0BLBLprefixQ++BLsubstrQBL=BLprefixBL
82 75 15 80 81 syl3anc φBLprefixQ++BLsubstrQBL=BLprefixBL
83 pfxid BLWordI×2𝑜BLprefixBL=BL
84 75 83 syl φBLprefixBL=BL
85 82 84 eqtrd φBLprefixQ++BLsubstrQBL=BL
86 55 85 eqeq12d φAKprefixP++AKsubstrPAK=BLprefixQ++BLsubstrQBLAK=BL
87 20 86 mtbird φ¬AKprefixP++AKsubstrPAK=BLprefixQ++BLsubstrQBL
88 1 2 3 4 efgtval AKWP0AKUI×2𝑜PTAKU=AKsplicePP⟨“UMU”⟩
89 43 14 16 88 syl3anc φPTAKU=AKsplicePP⟨“UMU”⟩
90 3 efgmf M:I×2𝑜I×2𝑜
91 90 ffvelcdmi UI×2𝑜MUI×2𝑜
92 16 91 syl φMUI×2𝑜
93 16 92 s2cld φ⟨“UMU”⟩WordI×2𝑜
94 splval AKWP0AKP0AK⟨“UMU”⟩WordI×2𝑜AKsplicePP⟨“UMU”⟩=AKprefixP++⟨“UMU”⟩++AKsubstrPAK
95 43 14 14 93 94 syl13anc φAKsplicePP⟨“UMU”⟩=AKprefixP++⟨“UMU”⟩++AKsubstrPAK
96 18 89 95 3eqtrd φSA=AKprefixP++⟨“UMU”⟩++AKsubstrPAK
97 1 2 3 4 efgtval BLWQ0BLVI×2𝑜QTBLV=BLspliceQQ⟨“VMV”⟩
98 74 15 17 97 syl3anc φQTBLV=BLspliceQQ⟨“VMV”⟩
99 90 ffvelcdmi VI×2𝑜MVI×2𝑜
100 17 99 syl φMVI×2𝑜
101 17 100 s2cld φ⟨“VMV”⟩WordI×2𝑜
102 splval BLWQ0BLQ0BL⟨“VMV”⟩WordI×2𝑜BLspliceQQ⟨“VMV”⟩=BLprefixQ++⟨“VMV”⟩++BLsubstrQBL
103 74 15 15 101 102 syl13anc φBLspliceQQ⟨“VMV”⟩=BLprefixQ++⟨“VMV”⟩++BLsubstrQBL
104 19 98 103 3eqtrd φSB=BLprefixQ++⟨“VMV”⟩++BLsubstrQBL
105 10 96 104 3eqtr3d φAKprefixP++⟨“UMU”⟩++AKsubstrPAK=BLprefixQ++⟨“VMV”⟩++BLsubstrQBL
106 105 adantr φP=QAKprefixP++⟨“UMU”⟩++AKsubstrPAK=BLprefixQ++⟨“VMV”⟩++BLsubstrQBL
107 pfxcl AKWordI×2𝑜AKprefixPWordI×2𝑜
108 44 107 syl φAKprefixPWordI×2𝑜
109 108 adantr φP=QAKprefixPWordI×2𝑜
110 93 adantr φP=Q⟨“UMU”⟩WordI×2𝑜
111 ccatcl AKprefixPWordI×2𝑜⟨“UMU”⟩WordI×2𝑜AKprefixP++⟨“UMU”⟩WordI×2𝑜
112 109 110 111 syl2anc φP=QAKprefixP++⟨“UMU”⟩WordI×2𝑜
113 swrdcl AKWordI×2𝑜AKsubstrPAKWordI×2𝑜
114 44 113 syl φAKsubstrPAKWordI×2𝑜
115 114 adantr φP=QAKsubstrPAKWordI×2𝑜
116 pfxcl BLWordI×2𝑜BLprefixQWordI×2𝑜
117 75 116 syl φBLprefixQWordI×2𝑜
118 117 adantr φP=QBLprefixQWordI×2𝑜
119 101 adantr φP=Q⟨“VMV”⟩WordI×2𝑜
120 ccatcl BLprefixQWordI×2𝑜⟨“VMV”⟩WordI×2𝑜BLprefixQ++⟨“VMV”⟩WordI×2𝑜
121 118 119 120 syl2anc φP=QBLprefixQ++⟨“VMV”⟩WordI×2𝑜
122 swrdcl BLWordI×2𝑜BLsubstrQBLWordI×2𝑜
123 75 122 syl φBLsubstrQBLWordI×2𝑜
124 123 adantr φP=QBLsubstrQBLWordI×2𝑜
125 pfxlen AKWordI×2𝑜P0AKAKprefixP=P
126 44 14 125 syl2anc φAKprefixP=P
127 pfxlen BLWordI×2𝑜Q0BLBLprefixQ=Q
128 75 15 127 syl2anc φBLprefixQ=Q
129 126 128 eqeq12d φAKprefixP=BLprefixQP=Q
130 129 biimpar φP=QAKprefixP=BLprefixQ
131 s2len ⟨“UMU”⟩=2
132 s2len ⟨“VMV”⟩=2
133 131 132 eqtr4i ⟨“UMU”⟩=⟨“VMV”⟩
134 133 a1i φP=Q⟨“UMU”⟩=⟨“VMV”⟩
135 130 134 oveq12d φP=QAKprefixP+⟨“UMU”⟩=BLprefixQ+⟨“VMV”⟩
136 ccatlen AKprefixPWordI×2𝑜⟨“UMU”⟩WordI×2𝑜AKprefixP++⟨“UMU”⟩=AKprefixP+⟨“UMU”⟩
137 109 110 136 syl2anc φP=QAKprefixP++⟨“UMU”⟩=AKprefixP+⟨“UMU”⟩
138 ccatlen BLprefixQWordI×2𝑜⟨“VMV”⟩WordI×2𝑜BLprefixQ++⟨“VMV”⟩=BLprefixQ+⟨“VMV”⟩
139 118 119 138 syl2anc φP=QBLprefixQ++⟨“VMV”⟩=BLprefixQ+⟨“VMV”⟩
140 135 137 139 3eqtr4d φP=QAKprefixP++⟨“UMU”⟩=BLprefixQ++⟨“VMV”⟩
141 ccatopth AKprefixP++⟨“UMU”⟩WordI×2𝑜AKsubstrPAKWordI×2𝑜BLprefixQ++⟨“VMV”⟩WordI×2𝑜BLsubstrQBLWordI×2𝑜AKprefixP++⟨“UMU”⟩=BLprefixQ++⟨“VMV”⟩AKprefixP++⟨“UMU”⟩++AKsubstrPAK=BLprefixQ++⟨“VMV”⟩++BLsubstrQBLAKprefixP++⟨“UMU”⟩=BLprefixQ++⟨“VMV”⟩AKsubstrPAK=BLsubstrQBL
142 112 115 121 124 140 141 syl221anc φP=QAKprefixP++⟨“UMU”⟩++AKsubstrPAK=BLprefixQ++⟨“VMV”⟩++BLsubstrQBLAKprefixP++⟨“UMU”⟩=BLprefixQ++⟨“VMV”⟩AKsubstrPAK=BLsubstrQBL
143 106 142 mpbid φP=QAKprefixP++⟨“UMU”⟩=BLprefixQ++⟨“VMV”⟩AKsubstrPAK=BLsubstrQBL
144 143 simpld φP=QAKprefixP++⟨“UMU”⟩=BLprefixQ++⟨“VMV”⟩
145 ccatopth AKprefixPWordI×2𝑜⟨“UMU”⟩WordI×2𝑜BLprefixQWordI×2𝑜⟨“VMV”⟩WordI×2𝑜AKprefixP=BLprefixQAKprefixP++⟨“UMU”⟩=BLprefixQ++⟨“VMV”⟩AKprefixP=BLprefixQ⟨“UMU”⟩=⟨“VMV”⟩
146 109 110 118 119 130 145 syl221anc φP=QAKprefixP++⟨“UMU”⟩=BLprefixQ++⟨“VMV”⟩AKprefixP=BLprefixQ⟨“UMU”⟩=⟨“VMV”⟩
147 144 146 mpbid φP=QAKprefixP=BLprefixQ⟨“UMU”⟩=⟨“VMV”⟩
148 147 simpld φP=QAKprefixP=BLprefixQ
149 143 simprd φP=QAKsubstrPAK=BLsubstrQBL
150 148 149 oveq12d φP=QAKprefixP++AKsubstrPAK=BLprefixQ++BLsubstrQBL
151 87 150 mtand φ¬P=Q
152 151 pm2.21d φP=QA0=B0
153 uzp1 PQ+1P=Q+1PQ+1+1
154 16 s1cld φ⟨“U”⟩WordI×2𝑜
155 ccatcl AKprefixPWordI×2𝑜⟨“U”⟩WordI×2𝑜AKprefixP++⟨“U”⟩WordI×2𝑜
156 108 154 155 syl2anc φAKprefixP++⟨“U”⟩WordI×2𝑜
157 92 s1cld φ⟨“MU”⟩WordI×2𝑜
158 ccatass AKprefixP++⟨“U”⟩WordI×2𝑜⟨“MU”⟩WordI×2𝑜AKsubstrPAKWordI×2𝑜AKprefixP++⟨“U”⟩++⟨“MU”⟩++AKsubstrPAK=AKprefixP++⟨“U”⟩++⟨“MU”⟩++AKsubstrPAK
159 156 157 114 158 syl3anc φAKprefixP++⟨“U”⟩++⟨“MU”⟩++AKsubstrPAK=AKprefixP++⟨“U”⟩++⟨“MU”⟩++AKsubstrPAK
160 ccatass AKprefixPWordI×2𝑜⟨“U”⟩WordI×2𝑜⟨“MU”⟩WordI×2𝑜AKprefixP++⟨“U”⟩++⟨“MU”⟩=AKprefixP++⟨“U”⟩++⟨“MU”⟩
161 108 154 157 160 syl3anc φAKprefixP++⟨“U”⟩++⟨“MU”⟩=AKprefixP++⟨“U”⟩++⟨“MU”⟩
162 df-s2 ⟨“UMU”⟩=⟨“U”⟩++⟨“MU”⟩
163 162 oveq2i AKprefixP++⟨“UMU”⟩=AKprefixP++⟨“U”⟩++⟨“MU”⟩
164 161 163 eqtr4di φAKprefixP++⟨“U”⟩++⟨“MU”⟩=AKprefixP++⟨“UMU”⟩
165 164 oveq1d φAKprefixP++⟨“U”⟩++⟨“MU”⟩++AKsubstrPAK=AKprefixP++⟨“UMU”⟩++AKsubstrPAK
166 17 s1cld φ⟨“V”⟩WordI×2𝑜
167 100 s1cld φ⟨“MV”⟩WordI×2𝑜
168 ccatass BLprefixQWordI×2𝑜⟨“V”⟩WordI×2𝑜⟨“MV”⟩WordI×2𝑜BLprefixQ++⟨“V”⟩++⟨“MV”⟩=BLprefixQ++⟨“V”⟩++⟨“MV”⟩
169 117 166 167 168 syl3anc φBLprefixQ++⟨“V”⟩++⟨“MV”⟩=BLprefixQ++⟨“V”⟩++⟨“MV”⟩
170 df-s2 ⟨“VMV”⟩=⟨“V”⟩++⟨“MV”⟩
171 170 oveq2i BLprefixQ++⟨“VMV”⟩=BLprefixQ++⟨“V”⟩++⟨“MV”⟩
172 169 171 eqtr4di φBLprefixQ++⟨“V”⟩++⟨“MV”⟩=BLprefixQ++⟨“VMV”⟩
173 172 oveq1d φBLprefixQ++⟨“V”⟩++⟨“MV”⟩++BLsubstrQBL=BLprefixQ++⟨“VMV”⟩++BLsubstrQBL
174 105 165 173 3eqtr4d φAKprefixP++⟨“U”⟩++⟨“MU”⟩++AKsubstrPAK=BLprefixQ++⟨“V”⟩++⟨“MV”⟩++BLsubstrQBL
175 159 174 eqtr3d φAKprefixP++⟨“U”⟩++⟨“MU”⟩++AKsubstrPAK=BLprefixQ++⟨“V”⟩++⟨“MV”⟩++BLsubstrQBL
176 175 adantr φP=Q+1AKprefixP++⟨“U”⟩++⟨“MU”⟩++AKsubstrPAK=BLprefixQ++⟨“V”⟩++⟨“MV”⟩++BLsubstrQBL
177 156 adantr φP=Q+1AKprefixP++⟨“U”⟩WordI×2𝑜
178 157 adantr φP=Q+1⟨“MU”⟩WordI×2𝑜
179 114 adantr φP=Q+1AKsubstrPAKWordI×2𝑜
180 ccatcl ⟨“MU”⟩WordI×2𝑜AKsubstrPAKWordI×2𝑜⟨“MU”⟩++AKsubstrPAKWordI×2𝑜
181 178 179 180 syl2anc φP=Q+1⟨“MU”⟩++AKsubstrPAKWordI×2𝑜
182 ccatcl BLprefixQWordI×2𝑜⟨“V”⟩WordI×2𝑜BLprefixQ++⟨“V”⟩WordI×2𝑜
183 117 166 182 syl2anc φBLprefixQ++⟨“V”⟩WordI×2𝑜
184 183 adantr φP=Q+1BLprefixQ++⟨“V”⟩WordI×2𝑜
185 167 adantr φP=Q+1⟨“MV”⟩WordI×2𝑜
186 ccatcl BLprefixQ++⟨“V”⟩WordI×2𝑜⟨“MV”⟩WordI×2𝑜BLprefixQ++⟨“V”⟩++⟨“MV”⟩WordI×2𝑜
187 184 185 186 syl2anc φP=Q+1BLprefixQ++⟨“V”⟩++⟨“MV”⟩WordI×2𝑜
188 123 adantr φP=Q+1BLsubstrQBLWordI×2𝑜
189 ccatlen BLprefixQWordI×2𝑜⟨“V”⟩WordI×2𝑜BLprefixQ++⟨“V”⟩=BLprefixQ+⟨“V”⟩
190 117 166 189 syl2anc φBLprefixQ++⟨“V”⟩=BLprefixQ+⟨“V”⟩
191 s1len ⟨“V”⟩=1
192 191 a1i φ⟨“V”⟩=1
193 128 192 oveq12d φBLprefixQ+⟨“V”⟩=Q+1
194 190 193 eqtrd φBLprefixQ++⟨“V”⟩=Q+1
195 126 194 eqeq12d φAKprefixP=BLprefixQ++⟨“V”⟩P=Q+1
196 195 biimpar φP=Q+1AKprefixP=BLprefixQ++⟨“V”⟩
197 s1len ⟨“U”⟩=1
198 s1len ⟨“MV”⟩=1
199 197 198 eqtr4i ⟨“U”⟩=⟨“MV”⟩
200 199 a1i φP=Q+1⟨“U”⟩=⟨“MV”⟩
201 196 200 oveq12d φP=Q+1AKprefixP+⟨“U”⟩=BLprefixQ++⟨“V”⟩+⟨“MV”⟩
202 108 adantr φP=Q+1AKprefixPWordI×2𝑜
203 154 adantr φP=Q+1⟨“U”⟩WordI×2𝑜
204 ccatlen AKprefixPWordI×2𝑜⟨“U”⟩WordI×2𝑜AKprefixP++⟨“U”⟩=AKprefixP+⟨“U”⟩
205 202 203 204 syl2anc φP=Q+1AKprefixP++⟨“U”⟩=AKprefixP+⟨“U”⟩
206 ccatlen BLprefixQ++⟨“V”⟩WordI×2𝑜⟨“MV”⟩WordI×2𝑜BLprefixQ++⟨“V”⟩++⟨“MV”⟩=BLprefixQ++⟨“V”⟩+⟨“MV”⟩
207 184 185 206 syl2anc φP=Q+1BLprefixQ++⟨“V”⟩++⟨“MV”⟩=BLprefixQ++⟨“V”⟩+⟨“MV”⟩
208 201 205 207 3eqtr4d φP=Q+1AKprefixP++⟨“U”⟩=BLprefixQ++⟨“V”⟩++⟨“MV”⟩
209 ccatopth AKprefixP++⟨“U”⟩WordI×2𝑜⟨“MU”⟩++AKsubstrPAKWordI×2𝑜BLprefixQ++⟨“V”⟩++⟨“MV”⟩WordI×2𝑜BLsubstrQBLWordI×2𝑜AKprefixP++⟨“U”⟩=BLprefixQ++⟨“V”⟩++⟨“MV”⟩AKprefixP++⟨“U”⟩++⟨“MU”⟩++AKsubstrPAK=BLprefixQ++⟨“V”⟩++⟨“MV”⟩++BLsubstrQBLAKprefixP++⟨“U”⟩=BLprefixQ++⟨“V”⟩++⟨“MV”⟩⟨“MU”⟩++AKsubstrPAK=BLsubstrQBL
210 177 181 187 188 208 209 syl221anc φP=Q+1AKprefixP++⟨“U”⟩++⟨“MU”⟩++AKsubstrPAK=BLprefixQ++⟨“V”⟩++⟨“MV”⟩++BLsubstrQBLAKprefixP++⟨“U”⟩=BLprefixQ++⟨“V”⟩++⟨“MV”⟩⟨“MU”⟩++AKsubstrPAK=BLsubstrQBL
211 176 210 mpbid φP=Q+1AKprefixP++⟨“U”⟩=BLprefixQ++⟨“V”⟩++⟨“MV”⟩⟨“MU”⟩++AKsubstrPAK=BLsubstrQBL
212 211 simpld φP=Q+1AKprefixP++⟨“U”⟩=BLprefixQ++⟨“V”⟩++⟨“MV”⟩
213 ccatopth AKprefixPWordI×2𝑜⟨“U”⟩WordI×2𝑜BLprefixQ++⟨“V”⟩WordI×2𝑜⟨“MV”⟩WordI×2𝑜AKprefixP=BLprefixQ++⟨“V”⟩AKprefixP++⟨“U”⟩=BLprefixQ++⟨“V”⟩++⟨“MV”⟩AKprefixP=BLprefixQ++⟨“V”⟩⟨“U”⟩=⟨“MV”⟩
214 202 203 184 185 196 213 syl221anc φP=Q+1AKprefixP++⟨“U”⟩=BLprefixQ++⟨“V”⟩++⟨“MV”⟩AKprefixP=BLprefixQ++⟨“V”⟩⟨“U”⟩=⟨“MV”⟩
215 212 214 mpbid φP=Q+1AKprefixP=BLprefixQ++⟨“V”⟩⟨“U”⟩=⟨“MV”⟩
216 215 simpld φP=Q+1AKprefixP=BLprefixQ++⟨“V”⟩
217 216 oveq1d φP=Q+1AKprefixP++AKsubstrPAK=BLprefixQ++⟨“V”⟩++AKsubstrPAK
218 117 adantr φP=Q+1BLprefixQWordI×2𝑜
219 166 adantr φP=Q+1⟨“V”⟩WordI×2𝑜
220 ccatass BLprefixQWordI×2𝑜⟨“V”⟩WordI×2𝑜AKsubstrPAKWordI×2𝑜BLprefixQ++⟨“V”⟩++AKsubstrPAK=BLprefixQ++⟨“V”⟩++AKsubstrPAK
221 218 219 179 220 syl3anc φP=Q+1BLprefixQ++⟨“V”⟩++AKsubstrPAK=BLprefixQ++⟨“V”⟩++AKsubstrPAK
222 215 simprd φP=Q+1⟨“U”⟩=⟨“MV”⟩
223 s111 UI×2𝑜MVI×2𝑜⟨“U”⟩=⟨“MV”⟩U=MV
224 16 100 223 syl2anc φ⟨“U”⟩=⟨“MV”⟩U=MV
225 224 adantr φP=Q+1⟨“U”⟩=⟨“MV”⟩U=MV
226 222 225 mpbid φP=Q+1U=MV
227 226 fveq2d φP=Q+1MU=MMV
228 3 efgmnvl VI×2𝑜MMV=V
229 17 228 syl φMMV=V
230 229 adantr φP=Q+1MMV=V
231 227 230 eqtrd φP=Q+1MU=V
232 231 s1eqd φP=Q+1⟨“MU”⟩=⟨“V”⟩
233 232 oveq1d φP=Q+1⟨“MU”⟩++AKsubstrPAK=⟨“V”⟩++AKsubstrPAK
234 211 simprd φP=Q+1⟨“MU”⟩++AKsubstrPAK=BLsubstrQBL
235 233 234 eqtr3d φP=Q+1⟨“V”⟩++AKsubstrPAK=BLsubstrQBL
236 235 oveq2d φP=Q+1BLprefixQ++⟨“V”⟩++AKsubstrPAK=BLprefixQ++BLsubstrQBL
237 217 221 236 3eqtrd φP=Q+1AKprefixP++AKsubstrPAK=BLprefixQ++BLsubstrQBL
238 87 237 mtand φ¬P=Q+1
239 238 pm2.21d φP=Q+1A0=B0
240 15 elfzelzd φQ
241 240 zcnd φQ
242 1cnd φ1
243 241 242 242 addassd φQ+1+1=Q+1+1
244 df-2 2=1+1
245 244 oveq2i Q+2=Q+1+1
246 243 245 eqtr4di φQ+1+1=Q+2
247 246 fveq2d φQ+1+1=Q+2
248 247 eleq2d φPQ+1+1PQ+2
249 1 2 3 4 5 6 efgsfo S:domSontoW
250 swrdcl AKWordI×2𝑜AKsubstrQ+2AKWordI×2𝑜
251 44 250 syl φAKsubstrQ+2AKWordI×2𝑜
252 ccatcl BLprefixQWordI×2𝑜AKsubstrQ+2AKWordI×2𝑜BLprefixQ++AKsubstrQ+2AKWordI×2𝑜
253 117 251 252 syl2anc φBLprefixQ++AKsubstrQ+2AKWordI×2𝑜
254 1 efgrcl AKWIVW=WordI×2𝑜
255 43 254 syl φIVW=WordI×2𝑜
256 255 simprd φW=WordI×2𝑜
257 253 256 eleqtrrd φBLprefixQ++AKsubstrQ+2AKW
258 foelrn S:domSontoWBLprefixQ++AKsubstrQ+2AKWcdomSBLprefixQ++AKsubstrQ+2AK=Sc
259 249 257 258 sylancr φcdomSBLprefixQ++AKsubstrQ+2AK=Sc
260 259 adantr φPQ+2cdomSBLprefixQ++AKsubstrQ+2AK=Sc
261 7 ad2antrr φPQ+2cdomSBLprefixQ++AKsubstrQ+2AK=ScadomSbdomSSa<SASa=Sba0=b0
262 8 ad2antrr φPQ+2cdomSBLprefixQ++AKsubstrQ+2AK=ScAdomS
263 9 ad2antrr φPQ+2cdomSBLprefixQ++AKsubstrQ+2AK=ScBdomS
264 10 ad2antrr φPQ+2cdomSBLprefixQ++AKsubstrQ+2AK=ScSA=SB
265 11 ad2antrr φPQ+2cdomSBLprefixQ++AKsubstrQ+2AK=Sc¬A0=B0
266 14 ad2antrr φPQ+2cdomSBLprefixQ++AKsubstrQ+2AK=ScP0AK
267 15 ad2antrr φPQ+2cdomSBLprefixQ++AKsubstrQ+2AK=ScQ0BL
268 16 ad2antrr φPQ+2cdomSBLprefixQ++AKsubstrQ+2AK=ScUI×2𝑜
269 17 ad2antrr φPQ+2cdomSBLprefixQ++AKsubstrQ+2AK=ScVI×2𝑜
270 18 ad2antrr φPQ+2cdomSBLprefixQ++AKsubstrQ+2AK=ScSA=PTAKU
271 19 ad2antrr φPQ+2cdomSBLprefixQ++AKsubstrQ+2AK=ScSB=QTBLV
272 20 ad2antrr φPQ+2cdomSBLprefixQ++AKsubstrQ+2AK=Sc¬AK=BL
273 simplr φPQ+2cdomSBLprefixQ++AKsubstrQ+2AK=ScPQ+2
274 simprl φPQ+2cdomSBLprefixQ++AKsubstrQ+2AK=SccdomS
275 simprr φPQ+2cdomSBLprefixQ++AKsubstrQ+2AK=ScBLprefixQ++AKsubstrQ+2AK=Sc
276 275 eqcomd φPQ+2cdomSBLprefixQ++AKsubstrQ+2AK=ScSc=BLprefixQ++AKsubstrQ+2AK
277 1 2 3 4 5 6 261 262 263 264 265 12 13 266 267 268 269 270 271 272 273 274 276 efgredlemd φPQ+2cdomSBLprefixQ++AKsubstrQ+2AK=ScA0=B0
278 260 277 rexlimddv φPQ+2A0=B0
279 278 ex φPQ+2A0=B0
280 248 279 sylbid φPQ+1+1A0=B0
281 239 280 jaod φP=Q+1PQ+1+1A0=B0
282 153 281 syl5 φPQ+1A0=B0
283 152 282 jaod φP=QPQ+1A0=B0
284 21 283 syl5 φPQA0=B0