Metamath Proof Explorer


Theorem expmulnbnd

Description: Exponentiation with a base greater than 1 is not bounded by any linear function. (Contributed by Mario Carneiro, 31-Mar-2015)

Ref Expression
Assertion expmulnbnd AB1<Bj0kjAk<Bk

Proof

Step Hyp Ref Expression
1 2re 2
2 simp1 AB1<BA
3 remulcl 2A2A
4 1 2 3 sylancr AB1<B2A
5 simp3 AB1<B1<B
6 1re 1
7 simp2 AB1<BB
8 difrp 1B1<BB1+
9 6 7 8 sylancr AB1<B1<BB1+
10 5 9 mpbid AB1<BB1+
11 4 10 rerpdivcld AB1<B2AB1
12 expnbnd 2AB1B1<Bn2AB1<Bn
13 11 7 5 12 syl3anc AB1<Bn2AB1<Bn
14 2nn0 20
15 nnnn0 nn0
16 15 ad2antrl AB1<Bn2AB1<Bnn0
17 nn0mulcl 20n02n0
18 14 16 17 sylancr AB1<Bn2AB1<Bn2n0
19 2 ad2antrr AB1<Bn2AB1<Bnk2nA
20 2nn 2
21 simprl AB1<Bn2AB1<Bnn
22 nnmulcl 2n2n
23 20 21 22 sylancr AB1<Bn2AB1<Bn2n
24 eluznn 2nk2nk
25 23 24 sylan AB1<Bn2AB1<Bnk2nk
26 25 nnred AB1<Bn2AB1<Bnk2nk
27 19 26 remulcld AB1<Bn2AB1<Bnk2nAk
28 0re 0
29 ifcl A0if0AA0
30 19 28 29 sylancl AB1<Bn2AB1<Bnk2nif0AA0
31 remulcl 2if0AA02if0AA0
32 1 30 31 sylancr AB1<Bn2AB1<Bnk2n2if0AA0
33 simplrl AB1<Bn2AB1<Bnk2nn
34 33 nnred AB1<Bn2AB1<Bnk2nn
35 26 34 resubcld AB1<Bn2AB1<Bnk2nkn
36 32 35 remulcld AB1<Bn2AB1<Bnk2n2if0AA0kn
37 7 ad2antrr AB1<Bn2AB1<Bnk2nB
38 25 nnnn0d AB1<Bn2AB1<Bnk2nk0
39 reexpcl Bk0Bk
40 37 38 39 syl2anc AB1<Bn2AB1<Bnk2nBk
41 remulcl 2kn2kn
42 1 35 41 sylancr AB1<Bn2AB1<Bnk2n2kn
43 38 nn0ge0d AB1<Bn2AB1<Bnk2n0k
44 max1 0A0if0AA0
45 28 19 44 sylancr AB1<Bn2AB1<Bnk2n0if0AA0
46 remulcl 2n2n
47 1 34 46 sylancr AB1<Bn2AB1<Bnk2n2n
48 eluzle k2n2nk
49 48 adantl AB1<Bn2AB1<Bnk2n2nk
50 47 26 26 49 leadd2dd AB1<Bn2AB1<Bnk2nk+2nk+k
51 26 recnd AB1<Bn2AB1<Bnk2nk
52 51 2timesd AB1<Bn2AB1<Bnk2n2k=k+k
53 50 52 breqtrrd AB1<Bn2AB1<Bnk2nk+2n2k
54 remulcl 2k2k
55 1 26 54 sylancr AB1<Bn2AB1<Bnk2n2k
56 leaddsub k2n2kk+2n2kk2k2n
57 26 47 55 56 syl3anc AB1<Bn2AB1<Bnk2nk+2n2kk2k2n
58 53 57 mpbid AB1<Bn2AB1<Bnk2nk2k2n
59 2cnd AB1<Bn2AB1<Bnk2n2
60 34 recnd AB1<Bn2AB1<Bnk2nn
61 59 51 60 subdid AB1<Bn2AB1<Bnk2n2kn=2k2n
62 58 61 breqtrrd AB1<Bn2AB1<Bnk2nk2kn
63 max2 0AAif0AA0
64 28 19 63 sylancr AB1<Bn2AB1<Bnk2nAif0AA0
65 26 42 19 30 43 45 62 64 lemul12bd AB1<Bn2AB1<Bnk2nkA2knif0AA0
66 19 recnd AB1<Bn2AB1<Bnk2nA
67 66 51 mulcomd AB1<Bn2AB1<Bnk2nAk=kA
68 30 recnd AB1<Bn2AB1<Bnk2nif0AA0
69 35 recnd AB1<Bn2AB1<Bnk2nkn
70 59 68 69 mul32d AB1<Bn2AB1<Bnk2n2if0AA0kn=2knif0AA0
71 65 67 70 3brtr4d AB1<Bn2AB1<Bnk2nAk2if0AA0kn
72 10 ad2antrr AB1<Bn2AB1<Bnk2nB1+
73 72 rpred AB1<Bn2AB1<Bnk2nB1
74 73 35 remulcld AB1<Bn2AB1<Bnk2nB1kn
75 33 nnnn0d AB1<Bn2AB1<Bnk2nn0
76 reexpcl Bn0Bn
77 37 75 76 syl2anc AB1<Bn2AB1<Bnk2nBn
78 74 77 remulcld AB1<Bn2AB1<Bnk2nB1knBn
79 simplrr AB1<Bn2AB1<Bnk2n2AB1<Bn
80 1 19 3 sylancr AB1<Bn2AB1<Bnk2n2A
81 80 77 72 ltdivmuld AB1<Bn2AB1<Bnk2n2AB1<Bn2A<B1Bn
82 79 81 mpbid AB1<Bn2AB1<Bnk2n2A<B1Bn
83 5 ad2antrr AB1<Bn2AB1<Bnk2n1<B
84 posdif 1B1<B0<B1
85 6 37 84 sylancr AB1<Bn2AB1<Bnk2n1<B0<B1
86 83 85 mpbid AB1<Bn2AB1<Bnk2n0<B1
87 33 nnzd AB1<Bn2AB1<Bnk2nn
88 28 a1i AB1<Bn2AB1<Bnk2n0
89 6 a1i AB1<Bn2AB1<Bnk2n1
90 0lt1 0<1
91 90 a1i AB1<Bn2AB1<Bnk2n0<1
92 88 89 37 91 83 lttrd AB1<Bn2AB1<Bnk2n0<B
93 expgt0 Bn0<B0<Bn
94 37 87 92 93 syl3anc AB1<Bn2AB1<Bnk2n0<Bn
95 73 77 86 94 mulgt0d AB1<Bn2AB1<Bnk2n0<B1Bn
96 oveq2 A=if0AA02A=2if0AA0
97 96 breq1d A=if0AA02A<B1Bn2if0AA0<B1Bn
98 2t0e0 20=0
99 oveq2 0=if0AA020=2if0AA0
100 98 99 eqtr3id 0=if0AA00=2if0AA0
101 100 breq1d 0=if0AA00<B1Bn2if0AA0<B1Bn
102 97 101 ifboth 2A<B1Bn0<B1Bn2if0AA0<B1Bn
103 82 95 102 syl2anc AB1<Bn2AB1<Bnk2n2if0AA0<B1Bn
104 73 77 remulcld AB1<Bn2AB1<Bnk2nB1Bn
105 simpr AB1<Bn2AB1<Bnk2nk2n
106 60 2timesd AB1<Bn2AB1<Bnk2n2n=n+n
107 106 fveq2d AB1<Bn2AB1<Bnk2n2n=n+n
108 105 107 eleqtrd AB1<Bn2AB1<Bnk2nkn+n
109 eluzsub nnkn+nknn
110 87 87 108 109 syl3anc AB1<Bn2AB1<Bnk2nknn
111 eluznn nknnkn
112 33 110 111 syl2anc AB1<Bn2AB1<Bnk2nkn
113 112 nngt0d AB1<Bn2AB1<Bnk2n0<kn
114 ltmul1 2if0AA0B1Bnkn0<kn2if0AA0<B1Bn2if0AA0kn<B1Bnkn
115 32 104 35 113 114 syl112anc AB1<Bn2AB1<Bnk2n2if0AA0<B1Bn2if0AA0kn<B1Bnkn
116 103 115 mpbid AB1<Bn2AB1<Bnk2n2if0AA0kn<B1Bnkn
117 73 recnd AB1<Bn2AB1<Bnk2nB1
118 77 recnd AB1<Bn2AB1<Bnk2nBn
119 117 118 69 mul32d AB1<Bn2AB1<Bnk2nB1Bnkn=B1knBn
120 116 119 breqtrd AB1<Bn2AB1<Bnk2n2if0AA0kn<B1knBn
121 peano2re B1knB1kn+1
122 74 121 syl AB1<Bn2AB1<Bnk2nB1kn+1
123 112 nnnn0d AB1<Bn2AB1<Bnk2nkn0
124 reexpcl Bkn0Bkn
125 37 123 124 syl2anc AB1<Bn2AB1<Bnk2nBkn
126 74 ltp1d AB1<Bn2AB1<Bnk2nB1kn<B1kn+1
127 88 37 92 ltled AB1<Bn2AB1<Bnk2n0B
128 bernneq2 Bkn00BB1kn+1Bkn
129 37 123 127 128 syl3anc AB1<Bn2AB1<Bnk2nB1kn+1Bkn
130 74 122 125 126 129 ltletrd AB1<Bn2AB1<Bnk2nB1kn<Bkn
131 37 recnd AB1<Bn2AB1<Bnk2nB
132 92 gt0ne0d AB1<Bn2AB1<Bnk2nB0
133 eluzelz k2nk
134 133 adantl AB1<Bn2AB1<Bnk2nk
135 expsub BB0knBkn=BkBn
136 131 132 134 87 135 syl22anc AB1<Bn2AB1<Bnk2nBkn=BkBn
137 130 136 breqtrd AB1<Bn2AB1<Bnk2nB1kn<BkBn
138 ltmuldiv B1knBkBn0<BnB1knBn<BkB1kn<BkBn
139 74 40 77 94 138 syl112anc AB1<Bn2AB1<Bnk2nB1knBn<BkB1kn<BkBn
140 137 139 mpbird AB1<Bn2AB1<Bnk2nB1knBn<Bk
141 36 78 40 120 140 lttrd AB1<Bn2AB1<Bnk2n2if0AA0kn<Bk
142 27 36 40 71 141 lelttrd AB1<Bn2AB1<Bnk2nAk<Bk
143 142 ralrimiva AB1<Bn2AB1<Bnk2nAk<Bk
144 fveq2 j=2nj=2n
145 144 raleqdv j=2nkjAk<Bkk2nAk<Bk
146 145 rspcev 2n0k2nAk<Bkj0kjAk<Bk
147 18 143 146 syl2anc AB1<Bn2AB1<Bnj0kjAk<Bk
148 13 147 rexlimddv AB1<Bj0kjAk<Bk