Metamath Proof Explorer


Theorem faclimlem1

Description: Lemma for faclim . Closed form for a particular sequence. (Contributed by Scott Fenton, 15-Dec-2017)

Ref Expression
Assertion faclimlem1 M0seq1×n1+Mn1+1n1+M+1n=xM+1x+1x+M+1

Proof

Step Hyp Ref Expression
1 fveq2 a=1seq1×n1+Mn1+1n1+M+1na=seq1×n1+Mn1+1n1+M+1n1
2 1z 1
3 seq1 1seq1×n1+Mn1+1n1+M+1n1=n1+Mn1+1n1+M+1n1
4 2 3 ax-mp seq1×n1+Mn1+1n1+M+1n1=n1+Mn1+1n1+M+1n1
5 1 4 eqtrdi a=1seq1×n1+Mn1+1n1+M+1na=n1+Mn1+1n1+M+1n1
6 oveq1 a=1a+1=1+1
7 oveq1 a=1a+M+1=1+M+1
8 6 7 oveq12d a=1a+1a+M+1=1+11+M+1
9 8 oveq2d a=1M+1a+1a+M+1=M+11+11+M+1
10 5 9 eqeq12d a=1seq1×n1+Mn1+1n1+M+1na=M+1a+1a+M+1n1+Mn1+1n1+M+1n1=M+11+11+M+1
11 10 imbi2d a=1M0seq1×n1+Mn1+1n1+M+1na=M+1a+1a+M+1M0n1+Mn1+1n1+M+1n1=M+11+11+M+1
12 fveq2 a=kseq1×n1+Mn1+1n1+M+1na=seq1×n1+Mn1+1n1+M+1nk
13 oveq1 a=ka+1=k+1
14 oveq1 a=ka+M+1=k+M+1
15 13 14 oveq12d a=ka+1a+M+1=k+1k+M+1
16 15 oveq2d a=kM+1a+1a+M+1=M+1k+1k+M+1
17 12 16 eqeq12d a=kseq1×n1+Mn1+1n1+M+1na=M+1a+1a+M+1seq1×n1+Mn1+1n1+M+1nk=M+1k+1k+M+1
18 17 imbi2d a=kM0seq1×n1+Mn1+1n1+M+1na=M+1a+1a+M+1M0seq1×n1+Mn1+1n1+M+1nk=M+1k+1k+M+1
19 fveq2 a=k+1seq1×n1+Mn1+1n1+M+1na=seq1×n1+Mn1+1n1+M+1nk+1
20 oveq1 a=k+1a+1=k+1+1
21 oveq1 a=k+1a+M+1=k+1+M+1
22 20 21 oveq12d a=k+1a+1a+M+1=k+1+1k+1+M+1
23 22 oveq2d a=k+1M+1a+1a+M+1=M+1k+1+1k+1+M+1
24 19 23 eqeq12d a=k+1seq1×n1+Mn1+1n1+M+1na=M+1a+1a+M+1seq1×n1+Mn1+1n1+M+1nk+1=M+1k+1+1k+1+M+1
25 24 imbi2d a=k+1M0seq1×n1+Mn1+1n1+M+1na=M+1a+1a+M+1M0seq1×n1+Mn1+1n1+M+1nk+1=M+1k+1+1k+1+M+1
26 fveq2 a=bseq1×n1+Mn1+1n1+M+1na=seq1×n1+Mn1+1n1+M+1nb
27 oveq1 a=ba+1=b+1
28 oveq1 a=ba+M+1=b+M+1
29 27 28 oveq12d a=ba+1a+M+1=b+1b+M+1
30 29 oveq2d a=bM+1a+1a+M+1=M+1b+1b+M+1
31 26 30 eqeq12d a=bseq1×n1+Mn1+1n1+M+1na=M+1a+1a+M+1seq1×n1+Mn1+1n1+M+1nb=M+1b+1b+M+1
32 31 imbi2d a=bM0seq1×n1+Mn1+1n1+M+1na=M+1a+1a+M+1M0seq1×n1+Mn1+1n1+M+1nb=M+1b+1b+M+1
33 1nn 1
34 oveq2 n=1Mn=M1
35 34 oveq2d n=11+Mn=1+M1
36 oveq2 n=11n=11
37 36 oveq2d n=11+1n=1+11
38 35 37 oveq12d n=11+Mn1+1n=1+M11+11
39 oveq2 n=1M+1n=M+11
40 39 oveq2d n=11+M+1n=1+M+11
41 38 40 oveq12d n=11+Mn1+1n1+M+1n=1+M11+111+M+11
42 eqid n1+Mn1+1n1+M+1n=n1+Mn1+1n1+M+1n
43 ovex 1+M11+111+M+11V
44 41 42 43 fvmpt 1n1+Mn1+1n1+M+1n1=1+M11+111+M+11
45 33 44 ax-mp n1+Mn1+1n1+M+1n1=1+M11+111+M+11
46 nn0cn M0M
47 46 div1d M0M1=M
48 47 oveq2d M01+M1=1+M
49 1div1e1 11=1
50 49 oveq2i 1+11=1+1
51 50 a1i M01+11=1+1
52 48 51 oveq12d M01+M11+11=1+M1+1
53 nn0p1nn M0M+1
54 53 nncnd M0M+1
55 54 div1d M0M+11=M+1
56 55 oveq2d M01+M+11=1+M+1
57 52 56 oveq12d M01+M11+111+M+11=1+M1+11+M+1
58 1cnd M01
59 58 46 addcomd M01+M=M+1
60 59 oveq1d M01+M1+1=M+11+1
61 60 oveq1d M01+M1+11+M+1=M+11+11+M+1
62 ax-1cn 1
63 62 62 addcli 1+1
64 63 a1i M01+1
65 33 a1i M01
66 65 53 nnaddcld M01+M+1
67 66 nncnd M01+M+1
68 66 nnne0d M01+M+10
69 54 64 67 68 divassd M0M+11+11+M+1=M+11+11+M+1
70 57 61 69 3eqtrd M01+M11+111+M+11=M+11+11+M+1
71 45 70 eqtrid M0n1+Mn1+1n1+M+1n1=M+11+11+M+1
72 seqp1 k1seq1×n1+Mn1+1n1+M+1nk+1=seq1×n1+Mn1+1n1+M+1nkn1+Mn1+1n1+M+1nk+1
73 nnuz =1
74 72 73 eleq2s kseq1×n1+Mn1+1n1+M+1nk+1=seq1×n1+Mn1+1n1+M+1nkn1+Mn1+1n1+M+1nk+1
75 74 adantr kM0seq1×n1+Mn1+1n1+M+1nk+1=seq1×n1+Mn1+1n1+M+1nkn1+Mn1+1n1+M+1nk+1
76 75 adantr kM0seq1×n1+Mn1+1n1+M+1nk=M+1k+1k+M+1seq1×n1+Mn1+1n1+M+1nk+1=seq1×n1+Mn1+1n1+M+1nkn1+Mn1+1n1+M+1nk+1
77 oveq1 seq1×n1+Mn1+1n1+M+1nk=M+1k+1k+M+1seq1×n1+Mn1+1n1+M+1nkn1+Mn1+1n1+M+1nk+1=M+1k+1k+M+1n1+Mn1+1n1+M+1nk+1
78 77 adantl kM0seq1×n1+Mn1+1n1+M+1nk=M+1k+1k+M+1seq1×n1+Mn1+1n1+M+1nkn1+Mn1+1n1+M+1nk+1=M+1k+1k+M+1n1+Mn1+1n1+M+1nk+1
79 peano2nn kk+1
80 oveq2 n=k+1Mn=Mk+1
81 80 oveq2d n=k+11+Mn=1+Mk+1
82 oveq2 n=k+11n=1k+1
83 82 oveq2d n=k+11+1n=1+1k+1
84 81 83 oveq12d n=k+11+Mn1+1n=1+Mk+11+1k+1
85 oveq2 n=k+1M+1n=M+1k+1
86 85 oveq2d n=k+11+M+1n=1+M+1k+1
87 84 86 oveq12d n=k+11+Mn1+1n1+M+1n=1+Mk+11+1k+11+M+1k+1
88 ovex 1+Mk+11+1k+11+M+1k+1V
89 87 42 88 fvmpt k+1n1+Mn1+1n1+M+1nk+1=1+Mk+11+1k+11+M+1k+1
90 79 89 syl kn1+Mn1+1n1+M+1nk+1=1+Mk+11+1k+11+M+1k+1
91 90 oveq2d kM+1k+1k+M+1n1+Mn1+1n1+M+1nk+1=M+1k+1k+M+11+Mk+11+1k+11+M+1k+1
92 91 adantr kM0M+1k+1k+M+1n1+Mn1+1n1+M+1nk+1=M+1k+1k+M+11+Mk+11+1k+11+M+1k+1
93 53 adantl kM0M+1
94 93 nncnd kM0M+1
95 79 adantr kM0k+1
96 95 nnrpd kM0k+1+
97 simpl kM0k
98 97 nnrpd kM0k+
99 93 nnrpd kM0M+1+
100 98 99 rpaddcld kM0k+M+1+
101 96 100 rpdivcld kM0k+1k+M+1+
102 101 rpcnd kM0k+1k+M+1
103 1cnd kM01
104 nn0re M0M
105 104 adantl kM0M
106 105 95 nndivred kM0Mk+1
107 106 recnd kM0Mk+1
108 103 107 addcomd kM01+Mk+1=Mk+1+1
109 nn0ge0 M00M
110 109 adantl kM00M
111 105 96 110 divge0d kM00Mk+1
112 106 111 ge0p1rpd kM0Mk+1+1+
113 108 112 eqeltrd kM01+Mk+1+
114 1rp 1+
115 114 a1i kM01+
116 96 rpreccld kM01k+1+
117 115 116 rpaddcld kM01+1k+1+
118 113 117 rpmulcld kM01+Mk+11+1k+1+
119 99 96 rpdivcld kM0M+1k+1+
120 115 119 rpaddcld kM01+M+1k+1+
121 118 120 rpdivcld kM01+Mk+11+1k+11+M+1k+1+
122 121 rpcnd kM01+Mk+11+1k+11+M+1k+1
123 94 102 122 mulassd kM0M+1k+1k+M+11+Mk+11+1k+11+M+1k+1=M+1k+1k+M+11+Mk+11+1k+11+M+1k+1
124 101 118 rpmulcld kM0k+1k+M+11+Mk+11+1k+1+
125 124 rpcnd kM0k+1k+M+11+Mk+11+1k+1
126 120 rpcnd kM01+M+1k+1
127 95 nncnd kM0k+1
128 120 rpne0d kM01+M+1k+10
129 95 nnne0d kM0k+10
130 125 126 127 128 129 divcan5d kM0k+1k+1k+M+11+Mk+11+1k+1k+11+M+1k+1=k+1k+M+11+Mk+11+1k+11+M+1k+1
131 118 rpcnd kM01+Mk+11+1k+1
132 127 102 131 mul12d kM0k+1k+1k+M+11+Mk+11+1k+1=k+1k+M+1k+11+Mk+11+1k+1
133 113 rpcnd kM01+Mk+1
134 117 rpcnd kM01+1k+1
135 127 133 134 mulassd kM0k+11+Mk+11+1k+1=k+11+Mk+11+1k+1
136 127 103 107 adddid kM0k+11+Mk+1=k+11+k+1Mk+1
137 127 mulridd kM0k+11=k+1
138 simpr kM0M0
139 138 nn0cnd kM0M
140 139 127 129 divcan2d kM0k+1Mk+1=M
141 137 140 oveq12d kM0k+11+k+1Mk+1=k+1+M
142 97 nncnd kM0k
143 142 103 139 addassd kM0k+1+M=k+1+M
144 103 139 addcomd kM01+M=M+1
145 144 oveq2d kM0k+1+M=k+M+1
146 143 145 eqtrd kM0k+1+M=k+M+1
147 136 141 146 3eqtrd kM0k+11+Mk+1=k+M+1
148 147 oveq1d kM0k+11+Mk+11+1k+1=k+M+11+1k+1
149 135 148 eqtr3d kM0k+11+Mk+11+1k+1=k+M+11+1k+1
150 149 oveq2d kM0k+1k+M+1k+11+Mk+11+1k+1=k+1k+M+1k+M+11+1k+1
151 100 rpcnd kM0k+M+1
152 102 151 134 mulassd kM0k+1k+M+1k+M+11+1k+1=k+1k+M+1k+M+11+1k+1
153 100 rpne0d kM0k+M+10
154 127 151 153 divcan1d kM0k+1k+M+1k+M+1=k+1
155 154 oveq1d kM0k+1k+M+1k+M+11+1k+1=k+11+1k+1
156 116 rpcnd kM01k+1
157 127 103 156 adddid kM0k+11+1k+1=k+11+k+11k+1
158 103 127 129 divcan2d kM0k+11k+1=1
159 137 158 oveq12d kM0k+11+k+11k+1=k+1+1
160 155 157 159 3eqtrd kM0k+1k+M+1k+M+11+1k+1=k+1+1
161 152 160 eqtr3d kM0k+1k+M+1k+M+11+1k+1=k+1+1
162 132 150 161 3eqtrd kM0k+1k+1k+M+11+Mk+11+1k+1=k+1+1
163 119 rpcnd kM0M+1k+1
164 127 103 163 adddid kM0k+11+M+1k+1=k+11+k+1M+1k+1
165 94 127 129 divcan2d kM0k+1M+1k+1=M+1
166 137 165 oveq12d kM0k+11+k+1M+1k+1=k+1+M+1
167 164 166 eqtrd kM0k+11+M+1k+1=k+1+M+1
168 162 167 oveq12d kM0k+1k+1k+M+11+Mk+11+1k+1k+11+M+1k+1=k+1+1k+1+M+1
169 102 131 126 128 divassd kM0k+1k+M+11+Mk+11+1k+11+M+1k+1=k+1k+M+11+Mk+11+1k+11+M+1k+1
170 130 168 169 3eqtr3rd kM0k+1k+M+11+Mk+11+1k+11+M+1k+1=k+1+1k+1+M+1
171 170 oveq2d kM0M+1k+1k+M+11+Mk+11+1k+11+M+1k+1=M+1k+1+1k+1+M+1
172 92 123 171 3eqtrd kM0M+1k+1k+M+1n1+Mn1+1n1+M+1nk+1=M+1k+1+1k+1+M+1
173 172 adantr kM0seq1×n1+Mn1+1n1+M+1nk=M+1k+1k+M+1M+1k+1k+M+1n1+Mn1+1n1+M+1nk+1=M+1k+1+1k+1+M+1
174 76 78 173 3eqtrd kM0seq1×n1+Mn1+1n1+M+1nk=M+1k+1k+M+1seq1×n1+Mn1+1n1+M+1nk+1=M+1k+1+1k+1+M+1
175 174 exp31 kM0seq1×n1+Mn1+1n1+M+1nk=M+1k+1k+M+1seq1×n1+Mn1+1n1+M+1nk+1=M+1k+1+1k+1+M+1
176 175 a2d kM0seq1×n1+Mn1+1n1+M+1nk=M+1k+1k+M+1M0seq1×n1+Mn1+1n1+M+1nk+1=M+1k+1+1k+1+M+1
177 11 18 25 32 71 176 nnind bM0seq1×n1+Mn1+1n1+M+1nb=M+1b+1b+M+1
178 177 impcom M0bseq1×n1+Mn1+1n1+M+1nb=M+1b+1b+M+1
179 oveq1 x=bx+1=b+1
180 oveq1 x=bx+M+1=b+M+1
181 179 180 oveq12d x=bx+1x+M+1=b+1b+M+1
182 181 oveq2d x=bM+1x+1x+M+1=M+1b+1b+M+1
183 eqid xM+1x+1x+M+1=xM+1x+1x+M+1
184 ovex M+1b+1b+M+1V
185 182 183 184 fvmpt bxM+1x+1x+M+1b=M+1b+1b+M+1
186 185 adantl M0bxM+1x+1x+M+1b=M+1b+1b+M+1
187 178 186 eqtr4d M0bseq1×n1+Mn1+1n1+M+1nb=xM+1x+1x+M+1b
188 187 ralrimiva M0bseq1×n1+Mn1+1n1+M+1nb=xM+1x+1x+M+1b
189 seqfn 1seq1×n1+Mn1+1n1+M+1nFn1
190 2 189 ax-mp seq1×n1+Mn1+1n1+M+1nFn1
191 73 fneq2i seq1×n1+Mn1+1n1+M+1nFnseq1×n1+Mn1+1n1+M+1nFn1
192 190 191 mpbir seq1×n1+Mn1+1n1+M+1nFn
193 ovex M+1x+1x+M+1V
194 193 183 fnmpti xM+1x+1x+M+1Fn
195 eqfnfv seq1×n1+Mn1+1n1+M+1nFnxM+1x+1x+M+1Fnseq1×n1+Mn1+1n1+M+1n=xM+1x+1x+M+1bseq1×n1+Mn1+1n1+M+1nb=xM+1x+1x+M+1b
196 192 194 195 mp2an seq1×n1+Mn1+1n1+M+1n=xM+1x+1x+M+1bseq1×n1+Mn1+1n1+M+1nb=xM+1x+1x+M+1b
197 188 196 sylibr M0seq1×n1+Mn1+1n1+M+1n=xM+1x+1x+M+1