Metamath Proof Explorer


Theorem fmul01lt1lem2

Description: Given a finite multiplication of values betweeen 0 and 1, a value E larger than any multiplicand, is larger than the whole multiplication. (Contributed by Glauco Siliprandi, 20-Apr-2017)

Ref Expression
Hypotheses fmul01lt1lem2.1 _iB
fmul01lt1lem2.2 iφ
fmul01lt1lem2.3 A=seqL×B
fmul01lt1lem2.4 φL
fmul01lt1lem2.5 φML
fmul01lt1lem2.6 φiLMBi
fmul01lt1lem2.7 φiLM0Bi
fmul01lt1lem2.8 φiLMBi1
fmul01lt1lem2.9 φE+
fmul01lt1lem2.10 φJLM
fmul01lt1lem2.11 φBJ<E
Assertion fmul01lt1lem2 φAM<E

Proof

Step Hyp Ref Expression
1 fmul01lt1lem2.1 _iB
2 fmul01lt1lem2.2 iφ
3 fmul01lt1lem2.3 A=seqL×B
4 fmul01lt1lem2.4 φL
5 fmul01lt1lem2.5 φML
6 fmul01lt1lem2.6 φiLMBi
7 fmul01lt1lem2.7 φiLM0Bi
8 fmul01lt1lem2.8 φiLMBi1
9 fmul01lt1lem2.9 φE+
10 fmul01lt1lem2.10 φJLM
11 fmul01lt1lem2.11 φBJ<E
12 nfv iJ=L
13 2 12 nfan iφJ=L
14 4 adantr φJ=LL
15 5 adantr φJ=LML
16 6 adantlr φJ=LiLMBi
17 7 adantlr φJ=LiLM0Bi
18 8 adantlr φJ=LiLMBi1
19 9 adantr φJ=LE+
20 simpr φJ=LJ=L
21 20 fveq2d φJ=LBJ=BL
22 11 adantr φJ=LBJ<E
23 21 22 eqbrtrrd φJ=LBL<E
24 1 13 3 14 15 16 17 18 19 23 fmul01lt1lem1 φJ=LAM<E
25 3 fveq1i AM=seqL×BM
26 nfv iaLM
27 2 26 nfan iφaLM
28 nfcv _ia
29 1 28 nffv _iBa
30 29 nfel1 iBa
31 27 30 nfim iφaLMBa
32 eleq1w i=aiLMaLM
33 32 anbi2d i=aφiLMφaLM
34 fveq2 i=aBi=Ba
35 34 eleq1d i=aBiBa
36 33 35 imbi12d i=aφiLMBiφaLMBa
37 31 36 6 chvarfv φaLMBa
38 remulcl ajaj
39 38 adantl φajaj
40 5 37 39 seqcl φseqL×BM
41 40 adantr φ¬J=LseqL×BM
42 elfzuz3 JLMMJ
43 10 42 syl φMJ
44 nfv iaJM
45 2 44 nfan iφaJM
46 45 30 nfim iφaJMBa
47 eleq1w i=aiJMaJM
48 47 anbi2d i=aφiJMφaJM
49 48 35 imbi12d i=aφiJMBiφaJMBa
50 4 adantr φiJML
51 eluzelz MLM
52 5 51 syl φM
53 52 adantr φiJMM
54 elfzelz iJMi
55 54 adantl φiJMi
56 4 zred φL
57 56 adantr φiJML
58 elfzelz JLMJ
59 10 58 syl φJ
60 59 zred φJ
61 60 adantr φiJMJ
62 54 zred iJMi
63 62 adantl φiJMi
64 elfzle1 JLMLJ
65 10 64 syl φLJ
66 65 adantr φiJMLJ
67 elfzle1 iJMJi
68 67 adantl φiJMJi
69 57 61 63 66 68 letrd φiJMLi
70 elfzle2 iJMiM
71 70 adantl φiJMiM
72 50 53 55 69 71 elfzd φiJMiLM
73 72 6 syldan φiJMBi
74 46 49 73 chvarfv φaJMBa
75 43 74 39 seqcl φseqJ×BM
76 75 adantr φ¬J=LseqJ×BM
77 9 rpred φE
78 77 adantr φ¬J=LE
79 remulcl abab
80 79 adantl φ¬J=Labab
81 simp1 abca
82 81 recnd abca
83 simp2 abcb
84 83 recnd abcb
85 simp3 abcc
86 85 recnd abcc
87 82 84 86 mulassd abcabc=abc
88 87 adantl φ¬J=Labcabc=abc
89 59 zcnd φJ
90 1cnd φ1
91 89 90 npcand φJ-1+1=J
92 91 fveq2d φJ-1+1=J
93 43 92 eleqtrrd φMJ-1+1
94 93 adantr φ¬J=LMJ-1+1
95 4 adantr φ¬J=LL
96 59 adantr φ¬J=LJ
97 1zzd φ¬J=L1
98 96 97 zsubcld φ¬J=LJ1
99 simpr φ¬J=L¬J=L
100 eqcom J=LL=J
101 99 100 sylnib φ¬J=L¬L=J
102 56 60 leloed φLJL<JL=J
103 65 102 mpbid φL<JL=J
104 103 adantr φ¬J=LL<JL=J
105 orel2 ¬L=JL<JL=JL<J
106 101 104 105 sylc φ¬J=LL<J
107 zltlem1 LJL<JLJ1
108 4 59 107 syl2anc φL<JLJ1
109 108 adantr φ¬J=LL<JLJ1
110 106 109 mpbid φ¬J=LLJ1
111 eluz2 J1LLJ1LJ1
112 95 98 110 111 syl3anbrc φ¬J=LJ1L
113 nfv i¬J=L
114 2 113 nfan iφ¬J=L
115 114 26 nfan iφ¬J=LaLM
116 115 30 nfim iφ¬J=LaLMBa
117 32 anbi2d i=aφ¬J=LiLMφ¬J=LaLM
118 117 35 imbi12d i=aφ¬J=LiLMBiφ¬J=LaLMBa
119 6 adantlr φ¬J=LiLMBi
120 116 118 119 chvarfv φ¬J=LaLMBa
121 80 88 94 112 120 seqsplit φ¬J=LseqL×BM=seqL×BJ1seqJ-1+1×BM
122 91 adantr φ¬J=LJ-1+1=J
123 122 seqeq1d φ¬J=LseqJ-1+1×B=seqJ×B
124 123 fveq1d φ¬J=LseqJ-1+1×BM=seqJ×BM
125 124 oveq2d φ¬J=LseqL×BJ1seqJ-1+1×BM=seqL×BJ1seqJ×BM
126 121 125 eqtrd φ¬J=LseqL×BM=seqL×BJ1seqJ×BM
127 nfv iaLJ1
128 114 127 nfan iφ¬J=LaLJ1
129 128 30 nfim iφ¬J=LaLJ1Ba
130 eleq1w i=aiLJ1aLJ1
131 130 anbi2d i=aφ¬J=LiLJ1φ¬J=LaLJ1
132 131 35 imbi12d i=aφ¬J=LiLJ1Biφ¬J=LaLJ1Ba
133 4 adantr φiLJ1L
134 52 adantr φiLJ1M
135 elfzelz iLJ1i
136 135 adantl φiLJ1i
137 elfzle1 iLJ1Li
138 137 adantl φiLJ1Li
139 135 zred iLJ1i
140 139 adantl φiLJ1i
141 60 adantr φiLJ1J
142 52 zred φM
143 142 adantr φiLJ1M
144 1red φ1
145 60 144 resubcld φJ1
146 145 adantr φiLJ1J1
147 elfzle2 iLJ1iJ1
148 147 adantl φiLJ1iJ1
149 60 lem1d φJ1J
150 149 adantr φiLJ1J1J
151 140 146 141 148 150 letrd φiLJ1iJ
152 elfzle2 JLMJM
153 10 152 syl φJM
154 153 adantr φiLJ1JM
155 140 141 143 151 154 letrd φiLJ1iM
156 133 134 136 138 155 elfzd φiLJ1iLM
157 156 6 syldan φiLJ1Bi
158 157 adantlr φ¬J=LiLJ1Bi
159 129 132 158 chvarfv φ¬J=LaLJ1Ba
160 38 adantl φ¬J=Lajaj
161 112 159 160 seqcl φ¬J=LseqL×BJ1
162 1red φ¬J=L1
163 eqid seqJ×B=seqJ×B
164 43 adantr φ¬J=LMJ
165 eluzfz2 MJMJM
166 43 165 syl φMJM
167 166 adantr φ¬J=LMJM
168 73 adantlr φ¬J=LiJMBi
169 72 7 syldan φiJM0Bi
170 169 adantlr φ¬J=LiJM0Bi
171 72 8 syldan φiJMBi1
172 171 adantlr φ¬J=LiJMBi1
173 1 114 163 96 164 167 168 170 172 fmul01 φ¬J=L0seqJ×BMseqJ×BM1
174 173 simpld φ¬J=L0seqJ×BM
175 eqid seqL×B=seqL×B
176 5 adantr φ¬J=LML
177 1zzd φ1
178 59 177 zsubcld φJ1
179 4 52 178 3jca φLMJ1
180 179 adantr φ¬J=LLMJ1
181 145 60 142 3jca φJ1JM
182 181 adantr φ¬J=LJ1JM
183 60 adantr φ¬J=LJ
184 183 lem1d φ¬J=LJ1J
185 153 adantr φ¬J=LJM
186 184 185 jca φ¬J=LJ1JJM
187 letr J1JMJ1JJMJ1M
188 182 186 187 sylc φ¬J=LJ1M
189 110 188 jca φ¬J=LLJ1J1M
190 elfz2 J1LMLMJ1LJ1J1M
191 180 189 190 sylanbrc φ¬J=LJ1LM
192 7 adantlr φ¬J=LiLM0Bi
193 8 adantlr φ¬J=LiLMBi1
194 1 114 175 95 176 191 119 192 193 fmul01 φ¬J=L0seqL×BJ1seqL×BJ11
195 194 simprd φ¬J=LseqL×BJ11
196 161 162 76 174 195 lemul1ad φ¬J=LseqL×BJ1seqJ×BM1seqJ×BM
197 126 196 eqbrtrd φ¬J=LseqL×BM1seqJ×BM
198 76 recnd φ¬J=LseqJ×BM
199 198 mullidd φ¬J=L1seqJ×BM=seqJ×BM
200 197 199 breqtrd φ¬J=LseqL×BMseqJ×BM
201 1 2 163 59 43 73 169 171 9 11 fmul01lt1lem1 φseqJ×BM<E
202 201 adantr φ¬J=LseqJ×BM<E
203 41 76 78 200 202 lelttrd φ¬J=LseqL×BM<E
204 25 203 eqbrtrid φ¬J=LAM<E
205 24 204 pm2.61dan φAM<E