| Step |
Hyp |
Ref |
Expression |
| 1 |
|
fourierdlem58.k |
|
| 2 |
|
fourierdlem58.ass |
|
| 3 |
|
fourierdlem58.0nA |
|
| 4 |
|
fourierdlem58.4 |
|
| 5 |
|
pire |
|
| 6 |
5
|
a1i |
|
| 7 |
6
|
renegcld |
|
| 8 |
7 6
|
iccssred |
|
| 9 |
2
|
sselda |
|
| 10 |
8 9
|
sseldd |
|
| 11 |
|
2re |
|
| 12 |
11
|
a1i |
|
| 13 |
10
|
rehalfcld |
|
| 14 |
13
|
resincld |
|
| 15 |
12 14
|
remulcld |
|
| 16 |
|
2cnd |
|
| 17 |
10
|
recnd |
|
| 18 |
17
|
halfcld |
|
| 19 |
18
|
sincld |
|
| 20 |
|
2ne0 |
|
| 21 |
20
|
a1i |
|
| 22 |
|
eqcom |
|
| 23 |
22
|
biimpi |
|
| 24 |
23
|
adantl |
|
| 25 |
|
simpl |
|
| 26 |
24 25
|
eqeltrd |
|
| 27 |
26
|
adantll |
|
| 28 |
3
|
ad2antrr |
|
| 29 |
27 28
|
pm2.65da |
|
| 30 |
29
|
neqned |
|
| 31 |
|
fourierdlem44 |
|
| 32 |
9 30 31
|
syl2anc |
|
| 33 |
16 19 21 32
|
mulne0d |
|
| 34 |
10 15 33
|
redivcld |
|
| 35 |
34 1
|
fmptd |
|
| 36 |
5
|
a1i |
|
| 37 |
36
|
renegcld |
|
| 38 |
37 36
|
iccssred |
|
| 39 |
2 38
|
sstrd |
|
| 40 |
|
dvfre |
|
| 41 |
35 39 40
|
syl2anc |
|
| 42 |
|
eqidd |
|
| 43 |
|
eqidd |
|
| 44 |
4 10 15 42 43
|
offval2 |
|
| 45 |
1 44
|
eqtr4id |
|
| 46 |
45
|
oveq2d |
|
| 47 |
|
reelprrecn |
|
| 48 |
47
|
a1i |
|
| 49 |
|
eqid |
|
| 50 |
17 49
|
fmptd |
|
| 51 |
16 19
|
mulcld |
|
| 52 |
33
|
neneqd |
|
| 53 |
|
elsng |
|
| 54 |
15 53
|
syl |
|
| 55 |
52 54
|
mtbird |
|
| 56 |
51 55
|
eldifd |
|
| 57 |
|
eqid |
|
| 58 |
56 57
|
fmptd |
|
| 59 |
|
tgioo4 |
|
| 60 |
4 59
|
eleqtrdi |
|
| 61 |
48 60
|
dvmptidg |
|
| 62 |
|
ax-resscn |
|
| 63 |
62
|
a1i |
|
| 64 |
39 63
|
sstrd |
|
| 65 |
|
1cnd |
|
| 66 |
|
ssid |
|
| 67 |
66
|
a1i |
|
| 68 |
64 65 67
|
constcncfg |
|
| 69 |
61 68
|
eqeltrd |
|
| 70 |
39
|
resmptd |
|
| 71 |
70
|
eqcomd |
|
| 72 |
71
|
oveq2d |
|
| 73 |
|
eqid |
|
| 74 |
|
2cnd |
|
| 75 |
|
recn |
|
| 76 |
75
|
halfcld |
|
| 77 |
76
|
sincld |
|
| 78 |
74 77
|
mulcld |
|
| 79 |
73 78
|
fmpti |
|
| 80 |
79
|
a1i |
|
| 81 |
|
ssid |
|
| 82 |
81
|
a1i |
|
| 83 |
|
eqid |
|
| 84 |
83 59
|
dvres |
|
| 85 |
63 80 82 39 84
|
syl22anc |
|
| 86 |
|
retop |
|
| 87 |
86
|
a1i |
|
| 88 |
|
uniretop |
|
| 89 |
88
|
isopn3 |
|
| 90 |
87 39 89
|
syl2anc |
|
| 91 |
4 90
|
mpbid |
|
| 92 |
91
|
reseq2d |
|
| 93 |
|
resmpt |
|
| 94 |
62 93
|
ax-mp |
|
| 95 |
|
id |
|
| 96 |
|
2cnd |
|
| 97 |
20
|
a1i |
|
| 98 |
95 96 97
|
divrec2d |
|
| 99 |
98
|
eqcomd |
|
| 100 |
75 99
|
syl |
|
| 101 |
100
|
fveq2d |
|
| 102 |
101
|
oveq2d |
|
| 103 |
102
|
mpteq2ia |
|
| 104 |
94 103
|
eqtr2i |
|
| 105 |
104
|
oveq2i |
|
| 106 |
|
eqid |
|
| 107 |
|
halfcn |
|
| 108 |
107
|
a1i |
|
| 109 |
108 95
|
mulcld |
|
| 110 |
109
|
sincld |
|
| 111 |
96 110
|
mulcld |
|
| 112 |
106 111
|
fmpti |
|
| 113 |
|
2cn |
|
| 114 |
|
dvasinbx |
|
| 115 |
113 107 114
|
mp2an |
|
| 116 |
113 20
|
recidi |
|
| 117 |
116
|
a1i |
|
| 118 |
99
|
fveq2d |
|
| 119 |
117 118
|
oveq12d |
|
| 120 |
|
halfcl |
|
| 121 |
120
|
coscld |
|
| 122 |
121
|
mullidd |
|
| 123 |
119 122
|
eqtrd |
|
| 124 |
123
|
mpteq2ia |
|
| 125 |
115 124
|
eqtri |
|
| 126 |
125
|
dmeqi |
|
| 127 |
|
dmmptg |
|
| 128 |
127 121
|
mprg |
|
| 129 |
126 128
|
eqtri |
|
| 130 |
62 129
|
sseqtrri |
|
| 131 |
|
dvres3 |
|
| 132 |
47 112 66 130 131
|
mp4an |
|
| 133 |
125
|
reseq1i |
|
| 134 |
105 132 133
|
3eqtri |
|
| 135 |
134
|
reseq1i |
|
| 136 |
135
|
a1i |
|
| 137 |
39
|
resabs1d |
|
| 138 |
64
|
resmptd |
|
| 139 |
137 138
|
eqtrd |
|
| 140 |
92 136 139
|
3eqtrd |
|
| 141 |
72 85 140
|
3eqtrd |
|
| 142 |
|
coscn |
|
| 143 |
142
|
a1i |
|
| 144 |
64 67
|
idcncfg |
|
| 145 |
|
2cnd |
|
| 146 |
20
|
a1i |
|
| 147 |
|
eldifsn |
|
| 148 |
145 146 147
|
sylanbrc |
|
| 149 |
|
difssd |
|
| 150 |
64 148 149
|
constcncfg |
|
| 151 |
144 150
|
divcncf |
|
| 152 |
143 151
|
cncfmpt1f |
|
| 153 |
141 152
|
eqeltrd |
|
| 154 |
48 50 58 69 153
|
dvdivcncf |
|
| 155 |
46 154
|
eqeltrd |
|
| 156 |
|
cncff |
|
| 157 |
|
fdm |
|
| 158 |
155 156 157
|
3syl |
|
| 159 |
158
|
feq2d |
|
| 160 |
41 159
|
mpbid |
|
| 161 |
|
cncfcdm |
|
| 162 |
63 155 161
|
syl2anc |
|
| 163 |
160 162
|
mpbird |
|