Metamath Proof Explorer


Theorem fpwrelmapffslem

Description: Lemma for fpwrelmapffs . For this theorem, the sets A and B could be infinite, but the relation R itself is finite. (Contributed by Thierry Arnoux, 1-Sep-2017) (Revised by Thierry Arnoux, 1-Sep-2019)

Ref Expression
Hypotheses fpwrelmapffslem.1 AV
fpwrelmapffslem.2 BV
fpwrelmapffslem.3 φF:A𝒫B
fpwrelmapffslem.4 φR=xy|xAyFx
Assertion fpwrelmapffslem φRFinranFFinFsuppFin

Proof

Step Hyp Ref Expression
1 fpwrelmapffslem.1 AV
2 fpwrelmapffslem.2 BV
3 fpwrelmapffslem.3 φF:A𝒫B
4 fpwrelmapffslem.4 φR=xy|xAyFx
5 relopabv Relxy|xAyFx
6 releq R=xy|xAyFxRelRRelxy|xAyFx
7 5 6 mpbiri R=xy|xAyFxRelR
8 relfi RelRRFindomRFinranRFin
9 4 7 8 3syl φRFindomRFinranRFin
10 rexcom4 xAzwzz=FxzxAwzz=Fx
11 ancom z=Fxwzwzz=Fx
12 11 exbii zz=Fxwzzwzz=Fx
13 fvex FxV
14 eleq2 z=FxwzwFx
15 13 14 ceqsexv zz=FxwzwFx
16 12 15 bitr3i zwzz=FxwFx
17 16 rexbii xAzwzz=FxxAwFx
18 r19.42v xAwzz=FxwzxAz=Fx
19 18 exbii zxAwzz=FxzwzxAz=Fx
20 10 17 19 3bitr3ri zwzxAz=FxxAwFx
21 df-rex xAwFxxxAwFx
22 20 21 bitr2i xxAwFxzwzxAz=Fx
23 22 a1i φxxAwFxzwzxAz=Fx
24 vex wV
25 eleq1w y=wyFxwFx
26 25 anbi2d y=wxAyFxxAwFx
27 26 exbidv y=wxxAyFxxxAwFx
28 24 27 elab wy|xxAyFxxxAwFx
29 eluniab wz|xAz=FxzwzxAz=Fx
30 23 28 29 3bitr4g φwy|xxAyFxwz|xAz=Fx
31 30 eqrdv φy|xxAyFx=z|xAz=Fx
32 31 eleq1d φy|xxAyFxFinz|xAz=FxFin
33 32 adantr φdomRFiny|xxAyFxFinz|xAz=FxFin
34 ffn F:A𝒫BFFnA
35 fnrnfv FFnAranF=z|xAz=Fx
36 3 34 35 3syl φranF=z|xAz=Fx
37 36 adantr φdomRFinranF=z|xAz=Fx
38 0ex V
39 38 a1i φdomRFinV
40 fex F:A𝒫BAVFV
41 3 1 40 sylancl φFV
42 41 adantr φdomRFinFV
43 3 ffund φFunF
44 43 adantr φdomRFinFunF
45 opabdm R=xy|xAyFxdomR=x|yxAyFx
46 4 45 syl φdomR=x|yxAyFx
47 1 40 mpan2 F:A𝒫BFV
48 suppimacnv FVVFsupp=F-1V
49 38 48 mpan2 FVFsupp=F-1V
50 3 47 49 3syl φFsupp=F-1V
51 3 feqmptd φF=xAFx
52 51 cnveqd φF-1=xAFx-1
53 52 imaeq1d φF-1V=xAFx-1V
54 50 53 eqtrd φFsupp=xAFx-1V
55 eqid xAFx=xAFx
56 55 mptpreima xAFx-1V=xA|FxV
57 54 56 eqtrdi φFsupp=xA|FxV
58 suppvalfn FFnAAVVFsupp=xA|Fx
59 1 38 58 mp3an23 FFnAFsupp=xA|Fx
60 3 34 59 3syl φFsupp=xA|Fx
61 n0 FxyyFx
62 61 rabbii xA|Fx=xA|yyFx
63 62 a1i φxA|Fx=xA|yyFx
64 60 57 63 3eqtr3d φxA|FxV=xA|yyFx
65 df-rab xA|yyFx=x|xAyyFx
66 19.42v yxAyFxxAyyFx
67 66 abbii x|yxAyFx=x|xAyyFx
68 65 67 eqtr4i xA|yyFx=x|yxAyFx
69 68 a1i φxA|yyFx=x|yxAyFx
70 57 64 69 3eqtrd φFsupp=x|yxAyFx
71 46 70 eqtr4d φdomR=Fsupp
72 71 eleq1d φdomRFinFsuppFin
73 72 biimpa φdomRFinFsuppFin
74 39 42 44 73 ffsrn φdomRFinranFFin
75 37 74 eqeltrrd φdomRFinz|xAz=FxFin
76 unifi z|xAz=FxFinz|xAz=FxFinz|xAz=FxFin
77 76 ex z|xAz=FxFinz|xAz=FxFinz|xAz=FxFin
78 75 77 syl φdomRFinz|xAz=FxFinz|xAz=FxFin
79 unifi3 z|xAz=FxFinz|xAz=FxFin
80 78 79 impbid1 φdomRFinz|xAz=FxFinz|xAz=FxFin
81 33 80 bitr4d φdomRFiny|xxAyFxFinz|xAz=FxFin
82 opabrn R=xy|xAyFxranR=y|xxAyFx
83 4 82 syl φranR=y|xxAyFx
84 83 eleq1d φranRFiny|xxAyFxFin
85 84 adantr φdomRFinranRFiny|xxAyFxFin
86 37 sseq1d φdomRFinranFFinz|xAz=FxFin
87 81 85 86 3bitr4d φdomRFinranRFinranFFin
88 87 pm5.32da φdomRFinranRFindomRFinranFFin
89 72 anbi1d φdomRFinranFFinFsuppFinranFFin
90 88 89 bitrd φdomRFinranRFinFsuppFinranFFin
91 ancom FsuppFinranFFinranFFinFsuppFin
92 91 a1i φFsuppFinranFFinranFFinFsuppFin
93 9 90 92 3bitrd φRFinranFFinFsuppFin