Metamath Proof Explorer


Theorem frxp3

Description: Give well-foundedness over a triple Cartesian product. (Contributed by Scott Fenton, 21-Aug-2024)

Ref Expression
Hypotheses xpord3.1 U=xy|xA×B×CyA×B×C1st1stxR1st1sty1st1stx=1st1sty2nd1stxS2nd1sty2nd1stx=2nd1sty2ndxT2ndy2ndx=2ndyxy
frxp3.1 φRFrA
frxp3.2 φSFrB
frxp3.3 φTFrC
Assertion frxp3 φUFrA×B×C

Proof

Step Hyp Ref Expression
1 xpord3.1 U=xy|xA×B×CyA×B×C1st1stxR1st1sty1st1stx=1st1sty2nd1stxS2nd1sty2nd1stx=2nd1sty2ndxT2ndy2ndx=2ndyxy
2 frxp3.1 φRFrA
3 frxp3.2 φSFrB
4 frxp3.3 φTFrC
5 2 adantr φsA×B×CsRFrA
6 dmss sA×B×CdomsdomA×B×C
7 6 ad2antrl φsA×B×CsdomsdomA×B×C
8 dmxpss domA×B×CA×B
9 7 8 sstrdi φsA×B×CsdomsA×B
10 dmss domsA×BdomdomsdomA×B
11 9 10 syl φsA×B×CsdomdomsdomA×B
12 dmxpss domA×BA
13 11 12 sstrdi φsA×B×CsdomdomsA
14 vex sV
15 14 dmex domsV
16 15 dmex domdomsV
17 16 a1i φsA×B×CsdomdomsV
18 relxp RelA×B×C
19 relss sA×B×CRelA×B×CRels
20 18 19 mpi sA×B×CRels
21 20 adantl φsA×B×CRels
22 reldm0 Relss=doms=
23 21 22 syl φsA×B×Cs=doms=
24 relxp RelA×B
25 relss domA×B×CA×BRelA×BReldomA×B×C
26 8 24 25 mp2 ReldomA×B×C
27 relss domsdomA×B×CReldomA×B×CReldoms
28 6 26 27 mpisyl sA×B×CReldoms
29 28 adantl φsA×B×CReldoms
30 reldm0 Reldomsdoms=domdoms=
31 29 30 syl φsA×B×Cdoms=domdoms=
32 23 31 bitrd φsA×B×Cs=domdoms=
33 32 necon3bid φsA×B×Csdomdoms
34 33 biimpa φsA×B×Csdomdoms
35 34 anasss φsA×B×Csdomdoms
36 5 13 17 35 frd φsA×B×Csadomdomsddomdoms¬dRa
37 3 ad2antrr φsA×B×Csadomdomsddomdoms¬dRaSFrB
38 imassrn domsarandoms
39 rnss domsA×BrandomsranA×B
40 9 39 syl φsA×B×CsrandomsranA×B
41 rnxpss ranA×BB
42 40 41 sstrdi φsA×B×CsrandomsB
43 38 42 sstrid φsA×B×CsdomsaB
44 43 adantr φsA×B×Csadomdomsddomdoms¬dRadomsaB
45 15 imaex domsaV
46 45 a1i φsA×B×Csadomdomsddomdoms¬dRadomsaV
47 imadisj domsa=domdomsa=
48 disjsn domdomsa=¬adomdoms
49 47 48 bitri domsa=¬adomdoms
50 49 necon2abii adomdomsdomsa
51 50 biimpi adomdomsdomsa
52 51 ad2antrl φsA×B×Csadomdomsddomdoms¬dRadomsa
53 37 44 46 52 frd φsA×B×Csadomdomsddomdoms¬dRabdomsaedomsa¬eSb
54 4 ad3antrrr φsA×B×Csadomdomsddomdoms¬dRabdomsaedomsa¬eSbTFrC
55 imassrn sabrans
56 rnss sA×B×CransranA×B×C
57 56 ad2antrl φsA×B×CsransranA×B×C
58 rnxpss ranA×B×CC
59 57 58 sstrdi φsA×B×CsransC
60 55 59 sstrid φsA×B×CssabC
61 60 ad2antrr φsA×B×Csadomdomsddomdoms¬dRabdomsaedomsa¬eSbsabC
62 14 imaex sabV
63 62 a1i φsA×B×Csadomdomsddomdoms¬dRabdomsaedomsa¬eSbsabV
64 simprl φsA×B×Csadomdomsddomdoms¬dRabdomsaedomsa¬eSbbdomsa
65 vex aV
66 vex bV
67 65 66 elimasn bdomsaabdoms
68 64 67 sylib φsA×B×Csadomdomsddomdoms¬dRabdomsaedomsa¬eSbabdoms
69 imadisj sab=domsab=
70 disjsn domsab=¬abdoms
71 69 70 bitri sab=¬abdoms
72 71 necon2abii abdomssab
73 68 72 sylib φsA×B×Csadomdomsddomdoms¬dRabdomsaedomsa¬eSbsab
74 54 61 63 73 frd φsA×B×Csadomdomsddomdoms¬dRabdomsaedomsa¬eSbcsabfsab¬fTc
75 df-ot abc=abc
76 simprl φsA×B×Csadomdomsddomdoms¬dRabdomsaedomsa¬eSbcsabfsab¬fTccsab
77 opex abV
78 vex cV
79 77 78 elimasn csababcs
80 76 79 sylib φsA×B×Csadomdomsddomdoms¬dRabdomsaedomsa¬eSbcsabfsab¬fTcabcs
81 75 80 eqeltrid φsA×B×Csadomdomsddomdoms¬dRabdomsaedomsa¬eSbcsabfsab¬fTcabcs
82 simplrl φsA×B×Csadomdomsddomdoms¬dRasA×B×C
83 82 ad2antrr φsA×B×Csadomdomsddomdoms¬dRabdomsaedomsa¬eSbcsabfsab¬fTcsA×B×C
84 el2xpss qssA×B×Cghiq=ghi
85 84 ancoms sA×B×Cqsghiq=ghi
86 83 85 sylan φsA×B×Csadomdomsddomdoms¬dRabdomsaedomsa¬eSbcsabfsab¬fTcqsghiq=ghi
87 df-ne ic¬i=c
88 87 con2bii i=c¬ic
89 88 biimpi i=c¬ic
90 89 intnand i=c¬gRag=ahSbh=biTci=cic
91 90 adantl φsA×B×Csadomdomsddomdoms¬dRabdomsaedomsa¬eSbcsabfsab¬fTcabisi=c¬gRag=ahSbh=biTci=cic
92 breq1 f=ifTciTc
93 92 notbid f=i¬fTc¬iTc
94 simplrr φsA×B×Csadomdomsddomdoms¬dRabdomsaedomsa¬eSbcsabfsab¬fTcabisfsab¬fTc
95 94 adantr φsA×B×Csadomdomsddomdoms¬dRabdomsaedomsa¬eSbcsabfsab¬fTcabisicfsab¬fTc
96 df-ot abi=abi
97 simplr φsA×B×Csadomdomsddomdoms¬dRabdomsaedomsa¬eSbcsabfsab¬fTcabisicabis
98 96 97 eqeltrrid φsA×B×Csadomdomsddomdoms¬dRabdomsaedomsa¬eSbcsabfsab¬fTcabisicabis
99 vex iV
100 77 99 elimasn isababis
101 98 100 sylibr φsA×B×Csadomdomsddomdoms¬dRabdomsaedomsa¬eSbcsabfsab¬fTcabisicisab
102 93 95 101 rspcdva φsA×B×Csadomdomsddomdoms¬dRabdomsaedomsa¬eSbcsabfsab¬fTcabisic¬iTc
103 simpr φsA×B×Csadomdomsddomdoms¬dRabdomsaedomsa¬eSbcsabfsab¬fTcabisicic
104 103 neneqd φsA×B×Csadomdomsddomdoms¬dRabdomsaedomsa¬eSbcsabfsab¬fTcabisic¬i=c
105 ioran ¬iTci=c¬iTc¬i=c
106 102 104 105 sylanbrc φsA×B×Csadomdomsddomdoms¬dRabdomsaedomsa¬eSbcsabfsab¬fTcabisic¬iTci=c
107 106 intn3an3d φsA×B×Csadomdomsddomdoms¬dRabdomsaedomsa¬eSbcsabfsab¬fTcabisic¬gRag=ahSbh=biTci=c
108 107 intnanrd φsA×B×Csadomdomsddomdoms¬dRabdomsaedomsa¬eSbcsabfsab¬fTcabisic¬gRag=ahSbh=biTci=cic
109 91 108 pm2.61dane φsA×B×Csadomdomsddomdoms¬dRabdomsaedomsa¬eSbcsabfsab¬fTcabis¬gRag=ahSbh=biTci=cic
110 oteq2 h=bahi=abi
111 110 eleq1d h=bahisabis
112 111 anbi2d h=bφsA×B×Csadomdomsddomdoms¬dRabdomsaedomsa¬eSbcsabfsab¬fTcahisφsA×B×Csadomdomsddomdoms¬dRabdomsaedomsa¬eSbcsabfsab¬fTcabis
113 neeq1 h=bhbbb
114 113 orbi1d h=bhbicbbic
115 neirr ¬bb
116 orel1 ¬bbbbicic
117 115 116 ax-mp bbicic
118 olc icbbic
119 117 118 impbii bbicic
120 114 119 bitrdi h=bhbicic
121 120 anbi2d h=bgRag=ahSbh=biTci=chbicgRag=ahSbh=biTci=cic
122 121 notbid h=b¬gRag=ahSbh=biTci=chbic¬gRag=ahSbh=biTci=cic
123 112 122 imbi12d h=bφsA×B×Csadomdomsddomdoms¬dRabdomsaedomsa¬eSbcsabfsab¬fTcahis¬gRag=ahSbh=biTci=chbicφsA×B×Csadomdomsddomdoms¬dRabdomsaedomsa¬eSbcsabfsab¬fTcabis¬gRag=ahSbh=biTci=cic
124 109 123 mpbiri h=bφsA×B×Csadomdomsddomdoms¬dRabdomsaedomsa¬eSbcsabfsab¬fTcahis¬gRag=ahSbh=biTci=chbic
125 124 impcom φsA×B×Csadomdomsddomdoms¬dRabdomsaedomsa¬eSbcsabfsab¬fTcahish=b¬gRag=ahSbh=biTci=chbic
126 breq1 e=heSbhSb
127 126 notbid e=h¬eSb¬hSb
128 simplrr φsA×B×Csadomdomsddomdoms¬dRabdomsaedomsa¬eSbcsabfsab¬fTcedomsa¬eSb
129 128 ad2antrr φsA×B×Csadomdomsddomdoms¬dRabdomsaedomsa¬eSbcsabfsab¬fTcahishbedomsa¬eSb
130 df-ot ahi=ahi
131 simplr φsA×B×Csadomdomsddomdoms¬dRabdomsaedomsa¬eSbcsabfsab¬fTcahishbahis
132 130 131 eqeltrrid φsA×B×Csadomdomsddomdoms¬dRabdomsaedomsa¬eSbcsabfsab¬fTcahishbahis
133 opex ahV
134 133 99 opeldm ahisahdoms
135 132 134 syl φsA×B×Csadomdomsddomdoms¬dRabdomsaedomsa¬eSbcsabfsab¬fTcahishbahdoms
136 vex hV
137 65 136 elimasn hdomsaahdoms
138 135 137 sylibr φsA×B×Csadomdomsddomdoms¬dRabdomsaedomsa¬eSbcsabfsab¬fTcahishbhdomsa
139 127 129 138 rspcdva φsA×B×Csadomdomsddomdoms¬dRabdomsaedomsa¬eSbcsabfsab¬fTcahishb¬hSb
140 simpr φsA×B×Csadomdomsddomdoms¬dRabdomsaedomsa¬eSbcsabfsab¬fTcahishbhb
141 140 neneqd φsA×B×Csadomdomsddomdoms¬dRabdomsaedomsa¬eSbcsabfsab¬fTcahishb¬h=b
142 ioran ¬hSbh=b¬hSb¬h=b
143 139 141 142 sylanbrc φsA×B×Csadomdomsddomdoms¬dRabdomsaedomsa¬eSbcsabfsab¬fTcahishb¬hSbh=b
144 143 intn3an2d φsA×B×Csadomdomsddomdoms¬dRabdomsaedomsa¬eSbcsabfsab¬fTcahishb¬gRag=ahSbh=biTci=c
145 144 intnanrd φsA×B×Csadomdomsddomdoms¬dRabdomsaedomsa¬eSbcsabfsab¬fTcahishb¬gRag=ahSbh=biTci=chbic
146 125 145 pm2.61dane φsA×B×Csadomdomsddomdoms¬dRabdomsaedomsa¬eSbcsabfsab¬fTcahis¬gRag=ahSbh=biTci=chbic
147 oteq1 g=aghi=ahi
148 147 eleq1d g=aghisahis
149 148 anbi2d g=aφsA×B×Csadomdomsddomdoms¬dRabdomsaedomsa¬eSbcsabfsab¬fTcghisφsA×B×Csadomdomsddomdoms¬dRabdomsaedomsa¬eSbcsabfsab¬fTcahis
150 neeq1 g=agaaa
151 biidd g=ahbhb
152 biidd g=aicic
153 150 151 152 3orbi123d g=agahbicaahbic
154 3orass aahbicaahbic
155 neirr ¬aa
156 orel1 ¬aaaahbichbic
157 155 156 ax-mp aahbichbic
158 olc hbicaahbic
159 157 158 impbii aahbichbic
160 154 159 bitri aahbichbic
161 153 160 bitrdi g=agahbichbic
162 161 anbi2d g=agRag=ahSbh=biTci=cgahbicgRag=ahSbh=biTci=chbic
163 162 notbid g=a¬gRag=ahSbh=biTci=cgahbic¬gRag=ahSbh=biTci=chbic
164 149 163 imbi12d g=aφsA×B×Csadomdomsddomdoms¬dRabdomsaedomsa¬eSbcsabfsab¬fTcghis¬gRag=ahSbh=biTci=cgahbicφsA×B×Csadomdomsddomdoms¬dRabdomsaedomsa¬eSbcsabfsab¬fTcahis¬gRag=ahSbh=biTci=chbic
165 146 164 mpbiri g=aφsA×B×Csadomdomsddomdoms¬dRabdomsaedomsa¬eSbcsabfsab¬fTcghis¬gRag=ahSbh=biTci=cgahbic
166 165 impcom φsA×B×Csadomdomsddomdoms¬dRabdomsaedomsa¬eSbcsabfsab¬fTcghisg=a¬gRag=ahSbh=biTci=cgahbic
167 breq1 d=gdRagRa
168 167 notbid d=g¬dRa¬gRa
169 simplrr φsA×B×Csadomdomsddomdoms¬dRabdomsaedomsa¬eSbddomdoms¬dRa
170 169 ad3antrrr φsA×B×Csadomdomsddomdoms¬dRabdomsaedomsa¬eSbcsabfsab¬fTcghisgaddomdoms¬dRa
171 df-ot ghi=ghi
172 simplr φsA×B×Csadomdomsddomdoms¬dRabdomsaedomsa¬eSbcsabfsab¬fTcghisgaghis
173 171 172 eqeltrrid φsA×B×Csadomdomsddomdoms¬dRabdomsaedomsa¬eSbcsabfsab¬fTcghisgaghis
174 opex ghV
175 174 99 opeldm ghisghdoms
176 vex gV
177 176 136 opeldm ghdomsgdomdoms
178 173 175 177 3syl φsA×B×Csadomdomsddomdoms¬dRabdomsaedomsa¬eSbcsabfsab¬fTcghisgagdomdoms
179 168 170 178 rspcdva φsA×B×Csadomdomsddomdoms¬dRabdomsaedomsa¬eSbcsabfsab¬fTcghisga¬gRa
180 simpr φsA×B×Csadomdomsddomdoms¬dRabdomsaedomsa¬eSbcsabfsab¬fTcghisgaga
181 180 neneqd φsA×B×Csadomdomsddomdoms¬dRabdomsaedomsa¬eSbcsabfsab¬fTcghisga¬g=a
182 ioran ¬gRag=a¬gRa¬g=a
183 179 181 182 sylanbrc φsA×B×Csadomdomsddomdoms¬dRabdomsaedomsa¬eSbcsabfsab¬fTcghisga¬gRag=a
184 183 intn3an1d φsA×B×Csadomdomsddomdoms¬dRabdomsaedomsa¬eSbcsabfsab¬fTcghisga¬gRag=ahSbh=biTci=c
185 184 intnanrd φsA×B×Csadomdomsddomdoms¬dRabdomsaedomsa¬eSbcsabfsab¬fTcghisga¬gRag=ahSbh=biTci=cgahbic
186 166 185 pm2.61dane φsA×B×Csadomdomsddomdoms¬dRabdomsaedomsa¬eSbcsabfsab¬fTcghis¬gRag=ahSbh=biTci=cgahbic
187 186 intn3an3d φsA×B×Csadomdomsddomdoms¬dRabdomsaedomsa¬eSbcsabfsab¬fTcghis¬gAhBiCaAbBcCgRag=ahSbh=biTci=cgahbic
188 eleq1 q=ghiqsghis
189 188 anbi2d q=ghiφsA×B×Csadomdomsddomdoms¬dRabdomsaedomsa¬eSbcsabfsab¬fTcqsφsA×B×Csadomdomsddomdoms¬dRabdomsaedomsa¬eSbcsabfsab¬fTcghis
190 breq1 q=ghiqUabcghiUabc
191 1 xpord3lem ghiUabcgAhBiCaAbBcCgRag=ahSbh=biTci=cgahbic
192 190 191 bitrdi q=ghiqUabcgAhBiCaAbBcCgRag=ahSbh=biTci=cgahbic
193 192 notbid q=ghi¬qUabc¬gAhBiCaAbBcCgRag=ahSbh=biTci=cgahbic
194 189 193 imbi12d q=ghiφsA×B×Csadomdomsddomdoms¬dRabdomsaedomsa¬eSbcsabfsab¬fTcqs¬qUabcφsA×B×Csadomdomsddomdoms¬dRabdomsaedomsa¬eSbcsabfsab¬fTcghis¬gAhBiCaAbBcCgRag=ahSbh=biTci=cgahbic
195 187 194 mpbiri q=ghiφsA×B×Csadomdomsddomdoms¬dRabdomsaedomsa¬eSbcsabfsab¬fTcqs¬qUabc
196 195 com12 φsA×B×Csadomdomsddomdoms¬dRabdomsaedomsa¬eSbcsabfsab¬fTcqsq=ghi¬qUabc
197 196 exlimdv φsA×B×Csadomdomsddomdoms¬dRabdomsaedomsa¬eSbcsabfsab¬fTcqsiq=ghi¬qUabc
198 197 exlimdvv φsA×B×Csadomdomsddomdoms¬dRabdomsaedomsa¬eSbcsabfsab¬fTcqsghiq=ghi¬qUabc
199 86 198 mpd φsA×B×Csadomdomsddomdoms¬dRabdomsaedomsa¬eSbcsabfsab¬fTcqs¬qUabc
200 199 ralrimiva φsA×B×Csadomdomsddomdoms¬dRabdomsaedomsa¬eSbcsabfsab¬fTcqs¬qUabc
201 breq2 p=abcqUpqUabc
202 201 notbid p=abc¬qUp¬qUabc
203 202 ralbidv p=abcqs¬qUpqs¬qUabc
204 203 rspcev abcsqs¬qUabcpsqs¬qUp
205 81 200 204 syl2anc φsA×B×Csadomdomsddomdoms¬dRabdomsaedomsa¬eSbcsabfsab¬fTcpsqs¬qUp
206 74 205 rexlimddv φsA×B×Csadomdomsddomdoms¬dRabdomsaedomsa¬eSbpsqs¬qUp
207 53 206 rexlimddv φsA×B×Csadomdomsddomdoms¬dRapsqs¬qUp
208 36 207 rexlimddv φsA×B×Cspsqs¬qUp
209 208 ex φsA×B×Cspsqs¬qUp
210 209 alrimiv φssA×B×Cspsqs¬qUp
211 df-fr UFrA×B×CssA×B×Cspsqs¬qUp
212 210 211 sylibr φUFrA×B×C